Лабораторная работа: Кластеризация с помощью нейронных сетей

ylabel('Ves');

% Задание нового входного вектора

%Опрос сети

A=181

B=65

p=[A;B];

plot(A,B,'+r')

y=sim(h,p)

A =181

B = 65

y = (2,1) 1

Результат работы программы представлен на рис. 2. Кроме того, его можно увидеть в командном окне: у= (2,1) 1

Предъявленный вектор отнесен ко второму кластеру.

Теперь рассмотрим использование самоорганизующей карты на примере двумерных векторов. Используя самоорганизующиеся карты, двумерные векторы разбить на кластеры и выявить их центры, затем подать на вход самоорганизующей карты новый вектор и определить кластер, к которому он относится.

3.

P=rands(2,100) %3адание случайных двухмерных входных векторов

figure(1)

hold on

plot(P(1,:),P(2,:),'+r') %визуальное изображение входных векторов

%Создание НС с 3*4 нейронами

%По умолчанию функция TFCN = 'hextop', то есть нейроны располагаются в узлах двумерной сетки с шестиугольными ячейками

net=newsom([0 1;0 1],[3 4]);

net.trainParam.epoch=1 %3адание числа циклов настройки

net=train(net,P) % настройкасети

A=0.5

B=0.3

p=[A;B]; % Задание нового входного вектора

plot(A,B,'^k') %прорисовка на рисунке входного вектора (черный треугольник)

figure(2)

К-во Просмотров: 480
Бесплатно скачать Лабораторная работа: Кластеризация с помощью нейронных сетей