Лабораторная работа: Количественная мера информации

ЦЕЛЬ РАБОТЫ: экспериментальное изучение количественных аспектов информации.

ЛАБОРАТОРНОЕ ЗАДАНИЕ

1. Определить количество информации (по Хартли), содержащееся в заданном сообщении, при условии, что значениями являются буквы кириллицы.

«Фамилия Имя Отчество» завершил ежегодный съезд эрудированных школьников, мечтающих глубоко проникнуть в тайны физических явлений и химических реакций

2. Построить таблицу распределения частот символов, характерные для заданного сообщения. Производится так называемая частотная селекция, текст сообщения анализируется как поток символов и высчитывается частота встречаемости каждого символа. Сравнить с имеющимися данными в табл 1.

3. На основании полученных данных определить среднее и полное количество информации, содержащееся в заданном сообщении

4. Оценить избыточность сообщения.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Количество информации по Хартли и Шеннону

Понятие количество информации отождествляется с понятием информация. Эти два понятия являются синонимами. Мера информации должна монотонно возрастать с увеличением длительности сообщения (сигнала), которую естественно измерять числом символов в дискретном сообщении и временем передачи в непрерывном случае. Кроме того, на содержание количества информации должны влиять и статистические характеристики, так как сигнал должен рассматриваться как случайный процесс.

При этом наложено ряд ограничений:

1. Рассматриваются только дискретные сообщения.

2. Множество различных сообщений конечно.

3. Символы, составляющие сообщения равновероятны и независимы.

Хартли впервые предложил в качестве меры количества информации принять логарифм числа возможных последовательностей символов.

I=log mk =log N (1)

К.Шеннон попытался снять те ограничения, которые наложил Хартли. На самом деле в рассмотренном выше случае равной вероятности и независимости символов при любом k все возможные сообщения оказываются также равновероятными, вероятность каждого из таких сообщений равна P=1/N. Тогда количество информации можно выразить через вероятности появления сообщений I=-log P.

В силу статистической независимости символов, вероятность сообщения длиной в k символов равна

Если i-й символ повторяется в данном сообщении ki раз, то

так как при повторении i символа ki раз k уменьшается до m. Из теории вероятностей известно, что, при достаточно длинных сообщениях (большое число символов k) ki ≈k·pi и тогда вероятность сообщений будет равняться


Тогда окончательно получим

(2)

Данное выражение называется формулой Шеннона для определения количества информации.

Формула Шеннона для количества информации на отдельный символ сообщения совпадает с энтропией. Тогда количество информации сообщения состоящего из k символов будет равняться I=k·H

Количество информации, как мера снятой неопределенности

При передаче сообщений, о какой либо системе происходит уменьшение неопределенности. Если о системе все известно, то нет смысла посылать сообщение. Количество информации измеряют уменьшением энтропии.

Количество информации, приобретаемое при полном выяснении состояния некоторой физической системы, равно энтропии этой системы:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 383
Бесплатно скачать Лабораторная работа: Количественная мера информации