Лабораторная работа: Корреляционно-регрессионный анализ
Уравнение регрессии между у и х2(степенная):
E1 | 2171 |
E2 | 166 |
E3 | 165 |
С помощью пакета анализа
Y=0,148+0,008*x1+0,019*x2 |
r yx1 | 0,863 |
ryx2 | 0,005 |
rx1x2 | 0,395 |
r yx1x2 | 0,937 |
ryx2x1 | -0,723 |
rx1x2y | 0,772 |
R yx1x2 | 0,937 |
R^2 yx1x2 | 0,878 |
сигма ост | 0,003 |
Fрасч | 72,08 |
Fтабл | 2,086 |
стьюдента | 34,40 |
Линейный коэффициент корреляции может быть определен по формуле:
Или
.
Он изменяется в диапазоне от -1 до +1. положительный коэффициент характеризует прямую связь, отрицательный – обратную. Связь между факторным и результативным признаком можно признать тесной, если r>0,7.
Индекс корреляции может рассчитываться по формуле:
,
Индекс корреляции изменяется от 0 до 1.
оценка существенности связи на основе t – критерия Стьюдента (при оценке параметров) или F – критерия Фишера (при оценке уравнения регрессии).
для линейной формы связи,
для криволинейной формы связи,
где k – число параметров.
Нахождение аппроксимирующего уравнения, для чего определяется средняя ошибка аппроксимации
.
F -критерия Фишера: