Лабораторная работа: Корреляционно-регрессионный анализ

Выполнила студентка гр.8431

Гарбузова Ю.

Егарева Т. Н

Ерошенко Н.Н

Проверила

Фетисова Г.В

Великий Новгород

2010


Корреляционный анализ изучает стохастические связи между случайными величинами в экономике. Метод корреляции применяется для того, чтобы при сложном взаимодействии посторонних влияний выявить зависимость между результатом и факторами в том случае, если посторонние факторы не изменялись и не искажали основную зависимость. При этом число наблюдений должно быть достаточно велико, так как малое число наблюдений не позволяет обнаружить закономерность связи. Укрупненно можно рекомендовать: число наблюдений равно восьмикратному числу факторов, включенных в модель.

Задание:

1.) Построить корреляционное поле зависимости между y и x1. Сделать вывод относительно формы и направления связи.

2.) Построить уравнение регрессии между у и х1 (линейная, степенная, логарифмическая). Оценить каждую функцию через F-критерий, , ошибку аппроксимации.

3.) Построить корреляционное поле зависимости между y и x2. Сделать вывод относительно формы и направления связи.

4.) Построить двухфакторное уравнение регрессии между y, x1,x2. Оценить показатели тесноты связи.

5.) Оценить модель через F-критерий Фишера.

6.) Оценить параметры через t-критерий Стьюдента.

Исходные данные :


Уравнение регрессии между у и х1 (линейная):

F расч = (0,7451/(1-0,7451))*((25-1-1)/1) = 67,232

Уравнение регрессии между у и х1 (логарифмическая):


F расч = (0,4445/(1-0,4445))*((25-1-1)/1) = 18,404

Уравнение регрессии между у и х1 (степенная):

F расч = (0,4284/(1-0,4284))*((25-1-1)/1) = 0,019

линейная F расч 67,23146332
логарифмическая F расч 18,40414041
степенная F расч 0,019459742
Е1 53,9
Е2 72,5
Е3 48,2

Уравнение регрессии между у и х2 (линейная):

Уравнение регрессии между у и х2(логарифмическая):

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 203
Бесплатно скачать Лабораторная работа: Корреляционно-регрессионный анализ