Лабораторная работа: Критерии устойчивости систем
САУ устойчива, если коэффициенты первого столбца таблицы при положительны: , , , …, .
Для многочлена второго порядка коэффициенты:
Поскольку все коэффициенты 1-го столбца положительны, то по критерию Рауса система устойчива.
Устойчивость системы по критерию Гурвица
Суть критерия устойчивости Гурвица: для устойчивости замкнутой САУ необходимо и достаточно, чтобы определитель Гурвица и все его диагональные миноры были положительны при .
Для системы второго порядка (n=2) характеристическое уравнение имеет вид:
Матрица Гурвица примет вид:
Ее диагональные миноры:
получились положительными
Для устойчивости системы необходимо, чтобы все n диагональных миноров были положительны .
Поскольку все диагональные миноры матрицы Гурвица положительны (Δ1 > 0, Δ2 > 0) при a0 > 0, то система устойчива.
Устойчивость системы по критерию Михайлова
Формулировка критерия Михайлова:
Замкнутая система автоматического управления устойчива, если характеристическая кривая (годограф Михайлова), начинаясь на положительной вещественной оси в точке an, при изменении частоты 0£w£¥ последовательно проходит число квадрантов равное степени характеристического полинома.
Задан характеристический полином системы:
Построим годограф Михайлова в Маткад при изменении частоты от 0 до 10000 с-1 (рис 2)
Рис 2
Годограф, изображенный на рис 2 начинается на действительной положительной оси и проходит последовательно две четверти (равно степени полинома D(p)), (очень незначительно выступает на второй квадрант, возможно из-за того, что один из коэффициентов полинома очень мал a0 = 0.0000081, близок к нулю). Т.е наблюдаемая устойчивость на грани.
Поскольку годограф пересекает последовательно 2 квадранта для полинома второго порядка, то по критерию Михайлова система устойчива.
Устойчивость системы по критерию Найквиста
Для систем, устойчивых в разомкнутом состоянии:
Условие устойчивости замкнутой системы сводится к требованию, чтобы АФЧХ разомкнутой системы не охватывала точку (-1,j0).