Лабораторная работа: Нейронные сети с радиальными базисными функциями
2) Правило Больцмана
Правило Больцмана является стохастическим правилом обучения, обусловленным аналогией с термодинамическими принципами. В результате его выполнения осуществляется настройка весовых коэффициентов нейронов в соответствии с требуемым распределением вероятностей. Обучение правилу Больцмана может рассматриваться как отдельный случай коррекции по ошибке, в котором под ошибкой понимается расхождение корреляций состояний в двух режимах.
3) Правило Хебба
Правило Хебба является самым известным алгоритмом обучения нейронных сетей, суть которого заключается в следующем: если нейроны с обеих сторон синапса возбуждаются одновременно и регулярно, то сила синаптической связи возрастает. Важной особенностью является то, что изменение синаптического веса зависит только от активности связанных этим синапсом нейронов. Предложено большое количество разновидностей этого правила, различающихся особенностями модификации синап-тических весов.
4) Метод соревнования
В отличие от правила Хебба, в котором множество выходных нейронов могут возбуждаться одновременно, здесь выходные нейроны соревнуются между собой. И выходной нейрон с максимальным значением взвешенной суммы является «победителем» («победитель забирает все»). Выходы же остальных выходных нейронов устанавливаются в неактивное состояние. При обучении модифицируются только веса нейрона - «победителя» в сторону увеличения близости к данному входному примеру.
В состав пакета ППП Neural Network Toolbox входит М-функция hardlim , реализующая функцию активации с жесткими ограничениями.
Линейная функция активации purelin . Эта функция описывается соотношением, а = purelin(n) = n
Логистическая функция активации logsig . Эта функция описывается соотношением, а = logsig(n) = 1/(1 + ехр(-n)). Она принадлежит к классу сигмоидальных функций, и ее аргумент может принимать любое значение в диапазоне от - до + , а выход изменяется в диапазоне от 0 до 1. В пакете
ППП Neural Network Toolbox она представлена М-функцией logsig.
Благодаря свойству дифференцируемости эта функция часто используется в сетях с обучением на основе метода обратного распространения ошибки.