Лабораторная работа: Обеспечение надежности энергосистемы

Коэффициенты мощности, для которых не выполняется условие , называют коэффициентами дефицитной работы системы. Математическое ожидание недоотпуска электроэнергии за год вследствие дефицита мощности в энергосистеме определится по формуле:.

,

где - коэффициент ряда распределения дефицитных состояний, соответствующий уровню дефицита РД i ; 8760 – количество часов в году.

Э t Рн коэффициенты деф
19710 730 27 1,01854E-09 2,0075E-05
7371 182 40,5 4,22775E-10 3,1163E-06
49248 912 54 1,59482E-07 0,00785419
22113 364 60,75 2,10204E-07 0,00464824
61425 910 67,5 5,2551E-07 0,03227946
13513,5 182 74,25 1,05102E-07 0,0014203
177552 2192 81 0,000110699 19,6548535
144261 1644 87,75 0,000118199 17,0515552
103572 1096 94,5 7,87996E-05 8,16142813
73980 548 135 0,002462566 182,180602

Проведя необходимые расчеты получаем вероятность бездефицитных состояний КДБ =0,997; индекс надежности α=0,9996.

Для оценки резерва мощности используют два определенных ранее показателя:

1. Коэффициент готовности определенный через отношение отпущенной энергосистемой электроэнергии к общей ее потребности:

Кг = ( Э – DЭ)/Э,

Нормативное минимальное значение .

2. Коэффициент бездефицитной работы определенный по вероятностной модели функционирования ЭЭС путем вычленения состояний энергосистемы, в которых дефицит не возникает, и суммирования вероятностей возникновения этих состояний:

Нормативное минимальное значение .

Резерв считается достаточным, если и .

В случае недостаточности резерва, т.е. невыполнения условий и необходимо ввести дополнительные генерирующие мощности и проделать расчет сначала в аналогичной последовательности.

Поскольку полученные нами данные удовлетворяют заданным значениям, то переходим к решению следующего блока – вывод генераторов в ремонт.

Производя расчеты коэффициента Кбд и α, при выведенных генераторах в ремонт получаем результаты не удовлетворяющие нормативным требованиям, поэтому для поддержания должного уровня надежности ЭС и соблюдения нормативных значений коэффициентов Кбд и α при ремонте введем дополнительный резервный генератор на 30 МВт.

После чего производим расчеты нормативных коэффициентов повторно.

Вероятностная модель энергосистемы с учетом выведенных генераторов в ремонт в зимний период.

Кн\Кг 0 25 30 50 55 60 75 80 85 105 110 135
27 -27 -2 3 23 28 33 48 53 58 78 83 108
54 -54 -29 -24 -4 1 6 21 26 31 51 56 81
81 -81 -56 -51 -31 -26 -21 -6 -1 4 24 29 54
87,8 -87,8 -62,8 -57,8 -37,8 -32,8 -27,8 -12,8 -7,75 -2,75 17,3 22,3 47,3
94,5 -94,5 -69,5 -64,5 -44,5 -39,5 -34,5 -19,5 -14,5 -9,5 10,5 15,5 40,5
135 -135 -110 -105 -85 -80 -75 -60 -55 -50 -30 -25 0

Вероятностная модель энергосистемы с учетом выведенных генераторов в ремонт в летний период.

Кн\Кг 0 25 30 50 55 60 75 80 85 105 110 135
27 -27 -2 3 23 28 33 48 53 58 78 83 108
40,5 -40,5 -15,5 -10,5 9,5 14,5 19,5 34,5 39,5 44,5 64,5 69,5 94,5
54 -54 -29 -24 -4 1 6 21 26 31 51 56 81
60,8 -60,8 -35,8 -30,8 -10,8 -5,75 -0,75 14,3 19,3 24,3 44,3 49,3 74,25
67,5 -67,5 -42,5 -37,5 -17,5 -12,5 -7,5 7,5 12,5 17,5 37,5 42,5 67,5
74,3 -74,3 -49,3 -44,3 -24,3 -19,3 -14,3 0,75 5,75 10,8 30,8 35,8 60,75

Определяем среднее значение недоотпуска электрической энергии в энергосистеме за зимний период

Э t Рн коэффициенты деф
19710 730 27 1,01854E-09 2,0075E-05
7371 182 40,5 4,22775E-10 3,1163E-06
49248 912 54 1,59482E-07 0,00785419
22113 364 60,75 2,10204E-07 0,00464824
61425 910 67,5 5,2551E-07 0,03227946
13513,5 182 74,25 1,05102E-07 0,0014203
177552 2192 81 0,000110699 19,6548535
144261 1644 87,75 0,000118199 17,0515552
103572 1096 94,5 7,87996E-05 8,16142813
73980 548 135 0,002462566 182,180602

Проведя необходимые расчеты получаем вероятность бездефицитных состояний КДБ =0,996; индекс надежности α=0,999.

Поскольку полученные коэффициенты соответствуют нормативным параметрам, то считаем, что уровень надежности производства электроэнергии в ЭЭС является достаточным. Следовательно, можем переходить к следующему блоку нашей логической схемы.

Составление модели ППР

Данная ЭЭС в целом рассчитана по количеству установленных агрегатов и не учитывает того, что часть агрегатов может находиться в плановом ремонте, причем количество таких агрегатов в течение года может изменяться.

Проиллюстрируем определение необходимого технического резерва генерирующих мощностей путем прямого моделирования вывода генераторов в ремонт. Исходной информацией будет служить годовой график месячных максимумов нагрузки ЭЭС с учетом сезонных колебаний.

Основная задача данного блока заключается в соответствии надежности производства электроэнергии в ЭЭС нормативным показателям при условии, что определенное число генераторов будет выведено в ремонт.

Исходя из модели зимних и летних максимумов выводим генераторы мощностью 30 МВт в и генераторы 2ой группы мощностью 25 МВт в летний период т.к. длительность планового ремонта генераторов 1ой и 2ой группы соответствует 0,5 месяца. Что позволит во временном промежутке выполнить ремонты всех генераторов в установленные сроки.

Первоначально выводим генератор 1ой группы в ремонт, следовательно мощность генерируемая наше ЭЭС снизится на мощность соответствующую мощности генератора и на время его планового ремонта. Поэтому определим вероятность бездефицитных состояний и коэффициента надежности для данной модели. Вычисление проводятся аналогично предшествующим моделям. В результате которых получаем значения Кбд =0.996 и α=0,999, что соответствует требуемым нормативам. Далее выводим в ремонт генераторы 2ой группы мощностью 25МВт. Аналогично проведя вычисления получаем Кбд =0.996 и α=0,999.

Полученные значения нормативных коэффициентов позволяют вывести в ремонт каждый из имеющихся генераторов в установленные сроки в течение года, без ущерба надежности производства электроэнергии в ЭЭС. Графическую модель можно изобразить следующим образом.

К-во Просмотров: 209
Бесплатно скачать Лабораторная работа: Обеспечение надежности энергосистемы