Лабораторная работа: Охлаждение изолированного провода

Алгоритм решения данной задачи:

– с учётом начальных условий рассчитываем температуру Т i ,1 ;

– по выражению (4) рассчитываем поле температур для шага по длине j+1;

– по выражению (5) рассчитываем температуры в точка на границе изоляции;

– переходим к следующему шагу по длине z и повторяем расчёт сначала.

Модель №2

Данная модель охлаждения изолированной жилы отличается от предыдущей тем, что температура провода изменяется по длине охлаждающей ванны, а все остальные допущения остаются в силе. Схема разбиения области конечным числом узлов представлена на рис. 2.

Уравнения энергии для изоляции и для жилы соответственно будут иметь вид:

(6)


Рис. 2. Схема разбиения

Граничные условия:

Начальные условия:

Также как и в предыдущем случае для решения системы дифференциальных уравнений (4) используем метод конечных разностей. Разностные уравнения (использована явная разностная схема) имеют вид:

(7)

(8)

(9)


Алгоритм решения данной задачи:

– с учётом начальных условий рассчитываем температурное поле по выражениям (7) и (8) во внутренних точках областей I и II ;

– по выражениям (9), рассчитывается температура в граничных точках;

– переходим к следующему шагу по длине z и повторяем расчёт сначала.

В случае решения данной задачи по неявной разностной схеме для каждой из областей на каждом шаге по длине решается система алгебраических уравнений, пересчитываются значения температур на границах и переходят к следующему шагу по длине.

Модель №3

Данная модель охлаждения изолированной жилы отличается от предыдущей тем, что отбрасывается допущение о постоянстве теплофизических характеристик материала, а все остальные допущения остаются в силе.

Рис. 3. Зависимость теплофизических характеристик от температуры

Теплофизические характеристики для текущей точки можно определить (ниже приведён пример для теплоемкости с ):

К-во Просмотров: 372
Бесплатно скачать Лабораторная работа: Охлаждение изолированного провода