Лабораторная работа: Проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси и определение коэффициента вязкости жидкостей
Поскольку твердое тело представляет систему материальных точек, то сумма моментов инерции всех материальных точек тела относительно оси вращения есть момент инерции тела относительно этой оси:
Зависимость углового ускорения вращающегося тела от момента силы и момента инерции тела относительно оси, вокруг которой происходит вращение, определяется основным законом динамики вращательного движения:
или
где векторная сумма всех моментов сил действующих на твердое тело.
Теория метода и экспериментальная установка.
Задачей данной лабораторной работы является экспериментальная проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси.
В работе можно экспериментально определить величины углового ускорения ε, момента сил М при фиксированных значениях момента инерции вращающейся системы установки.
Установка представляет собой крестообразный маятник Обербека (рис.2). Изменяя положение грузов на спицах уменьшают или увеличивают момент инерции вращающейся системы. Существенно понимать, что момент инерции системы расчитать очень сложно. Момент инерции может быть вычислен, если известны величины ε и М.
Величины ε и М в работе могут быть изменены подвешиванием к нити установки различных грузов. Численные значения углового ускорения ε и момента сил М определяются независимо.
При проверке основного закона динамики вращательного движения к нити подвешивают грузы различной массы m1 , m2 , m3 … mi . Это позволяет определить два набора величин
ε1 ε2 ε3 … εi
М1 М2 М3 … Мi
Если данные получены при неизменном моменте инерции установки , то будет иметь место равенство отношений
(1)
Совпадение указанных отношений и свидетельствует о справедливости основного закона динамики вращательного движения твердого тела с неподвижной осью.
О справедливости закона также можно судить, если данные представить графически. Зависимость
от М на графике должна быть прямолинейной, причем по углу наклона к кривой можно судить о величине момента инерции.
а) Определение углового ускорения .
Угловое ускорение ε, с которым вращается крестообразный маятник может быть найдено по известному линейному ускорению, с которым опускается груз на нити. Линейное ускорение находят, измеряя время t, в течение которого груз массы m из состояния покоя опускается на расстояние h. Ускорение движения груза находится из выражения:
(2)
Так как нить сматывается без скольжения, то линейное тангенциальное ускорение точек канавки шкива, на котором намотана нить будет также равно
. Если радиус шкива R, то угловое ускорение ε шкива, а следовательно и крестовины найдется из выражения:
(3)
б) Определение момента сил
Для нахождения момента сил рассмотрим еще раз схему установки где расставлены действующие в системе силы и моменты сил. Момент сил М задающий угловое ускорение, как видно из рисунка, определяется выражением (рис.3)
(4)
где - момент силы натяжения
- момент сил трения в оси.