Лабораторная работа: Разработка математической модели на основе описанных методов
Цель работы: Получить навыки описания метода решения математической модели на примере решения задач аналитической геометрии.
Задание: 1) Согласно заданному варианту описать методы решения задачи.
2) На основе описанных методов разработать математическую модель.
Задача: Задано множество точек, найти параметры окружности минимального радиуса, проходящие через три точки множества.
Ход работы
І)Математическая постановка задачи:
1) Найти наименьший радиус окружности по формуле: i : = 1…n
D=, где ;
j : = 1… 2)D1,D2,D3- радиусы окружности;
3) XY, XY, XY, XY- координаты точек множества;
4) D=-формула нахождения расстояния между двумя точками;
5)
-система уравнения или неравенства;
6)
-совокупность уравнения или неравенства;
7) -знак больше
-знак меньше
=-знак равно;
8) A, B, C, E- некоторые точки с определенными координатами
ІІ) Описание методов решения:
Метод 1. Метод заключается в том , что бы найти наименьший радиус окружности с помощью последовательного соединения точек с одной, а затем проделывания этого с каждой из точек множества. Затем, с помощью формулы нахождения расстояния между двумя точками
(D=),необходимо вычислить длины получившихся отрезков. После вычисления отрезки необходимо сравнить между собой. В результате если два отрезка, выходящие из одной точки, равны - это и есть радиусы окружности. Но из условия, поставленные задачей, необходимо найти минимальный радиус окружности проходящей через три точки множества. Если при сравнении несколько пар одинаковых отрезков - необходимо найти наименьшую пару – это и будет минимальный радиус окружности. (Рис.№1)
Рис.№1
Метод 2.Второй метод заключается в том, что бы искать минимальный радиус окружности при помощи соединения множество точек между собой, и в результате получение множество геометрических фигур ( в данном случае геометрические фигуры – треугольники). Затем необходимо найти расстояние сторон треугольника. Для этого возьмем формулу нахождения расстояния между двумя точками (D=). В случаи, если стороны выходящие из одной точки равны – это и есть радиусы окружности, так как через равные отрезки, выходящие из одной точки можно провести окружность с центром точки соединения этих отрезков. В случае, если в конечном результате вычисления несколько равных сторон, выходящих из одной точки, необходимо найти минимальный радиус окружности. Минимальным радиусом будут стороны с наименьшей длиной (рис.№ 2).
ІІІ) Анализ метода решения:
Первый метод более эффективен, чем второй, так как требует меньшее количество арифметических расчетов, и в памяти будет занимать меньшее количество ресурсов.
ІY) Формализация выбранного метода:
1) D1=
D2=
--> ЧИТАТЬ ПОЛНОСТЬЮ <--