Лабораторная работа: Решение задач методами Эйлера и Рунге-Кутта

1. Построить кубический сплайн, интерполирующий функцию у = ¦(х) на [1,00; 1,20] для равномерного разбиения с шагом h = 0,04:

¦(х) = lnx

Найти значения в точках 1,05; 1,13; 1,17.

Решение

Построим таблицу значений функции на интервале [1,00; 1,20] с шагом

h = 0,04:

x ¦(х) = lnx
1 0
1,04 0,039221
1,08 0,076961
1,12 0,113329
1,16 0,14842
1,2 0,182322

Сплайн-интерполяция таблично заданной функции

1. На отрезке [ a, b] задать одномерную сетку

hx = {xi / xi = xi –1 + hi , hi > 0, i = 1, 2, 3, …, n; x0 = a, xn = b}

и значения yi = f(xi ) в узлах сетки xi , i = 0, 1, 2, …, n.

Задать x* Î (a, b).

2. Положить ai = yj , i = 0, 1, 2, …, n.

3. Составить и решить трех диагональную систему методом прогонки:


Определить значения коэффициентов ci , i = 0, 1, 2, …, n.

4. Определить значения коэффициентов di и bi , i = 1, 2, 3, …, n, воспользовавшись формулами:

di = (ci –ci 1 ) / hi , i = 1, 2, …

5. Определить значение индекса 0 < k£n из условия x* Î [xk – 1 , xk ].

6. Вычислить по формуле

S(x* ) = Sk (x* ) = ak + bk (x* – xk ) + (ck / 2)(x* – xk )2 + (dk / 6)(x* – xk )3 .

7. Процесс завершен: S(x* ) – результат интерполяции табличных данных в точку x* Î (a, b).

Результаты вычислений удобнее представлять в виде таблицы:

ai bi ci di
0,03922 0,96467 -1,188280 -29,70700
0,07696 0,92494 -0,798322 9,74897
0,11333 0,89366 -0,765997 0,80813
0,14842 0,85986 -0,92391 -3,94780
0,18232 0,84138 0,00000 23,09770

Значение функции в точке находится по формуле:

S(x* ) = Sk (x* ) = ak + bk (x* – xk ) + (ck / 2)(x* – xk )2 + (dk / 6)(x* – xk )3


2. Найти решение задачи Коши для дифференциального уравнения на равномерной сетке [a, b] с шагом 0,2 методом Эйлера и классическим методом Рунге-Кутта

, , 0 £ х £ 1

Решение. Метод Эйлера

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 138
Бесплатно скачать Лабораторная работа: Решение задач методами Эйлера и Рунге-Кутта