Лабораторная работа: Решение задачи линейного программирования симплексным методом
Δ0 = 320Ч0 + 318Ч0 + 415Ч0 = 0; Δ1 = 4Ч0 + 5Ч0 + 4Ч0 - 4 = -4;
Δ2 = 3Ч0 + 4Ч0 + 3Ч0 - 5 = -5; Δ3 = Δ4 = Δ5 = 0.
Начальный опорный план Х = {0; 0; 320; 318; 415} не оптимальный.
Так как │-5│>│-4│, то второй столбец - разрешающий. Минимальное симплексное отношение min Θ = 318/4, значит вторая строка разрешающая и а22 = 4 - разрешающий элемент.
1-ая итерация: переменная х2 записывается в столбец базисных переменных вместо х4. Элементы 2-ой строки делятся на а22 = 4, а второй столбец заполняется нулями, все другие элементы пересчитываются по правилу прямоугольника.
№ | БП | СБ | В | х1 | х2 | х3 | х4 | х5 |
4 | 5 | 0 | 0 | 0 | ||||
1 | х3 | 326/4 | 1/4 | 0 | 1 | -3/4 | 0 | |
х2 | 318/4 | 5/4 | 1 | 0 | 1/4 | 0 | ||
х5 | 706/4 | 1/4 | 0 | 0 | -3/4 | 1 | ||
Zj-cj | 1590/4 | 9/4 | 0 | 0 | 5/4 | 0 |
После заполнения таблицы видим, что все Δj ≥ 0, поэтому опорный план Х* = {0; 318/4} = {0; 79,5} является оптимальным, а максимальное значение целевой функции равно maxZ= 4Ч0 + 5Ч79,5 = 397,5
Из симплексной таблицы maxZ = 1590/4 = 397,5, значит решение верное.
Ответ: maxZ = 1590/4 = 397,5, при х1 = 0; х2 = 318/4 = 79,5
Вывод: Таким образом, чтобы получить максимальную прибыль, в размере 397,5 рублей, необходимо запланировать производство 79,5 единиц продукции P2, а производство продукции P1 экономически не целесообразно.