Лабораторная работа: Свойства полиспастов
Следовательно , и скорость подъема груза Q будет в два раза больше скорости подъема силой P самого груза блока.
Без учета вредных сопротивлений в блоке P= 2Q
С учетом всех сопротивлений : S=kQ; P=S+Q=k Q+Q=Q(k+1);
(5)
Если соединить по определенной схеме несколько подвижных и неподвижных блоков, закрепленных в обоймах, огибаемых гибким элементом (канатом, цепью), то такое устройство называется полиспастом.
Полиспасты могут быть самостоятельными грузоподъемными устройствами (рис.4) или входить составным элементом в грузоподъемные машины.
Так же как подвижные блоки, полиспасты делят на используемые для выигрыша в силе и для выигрыша в скорости. Первые нашли широкое применение в практике монтажных и строительных работ при подъеме и передвижении различных грузов, вторые применяются значительно реже и главным образом в гидравлических и пневматических подъемниках.
В зависимости от принятых схем расположения блоков и огибания их гибким элементом различаются полиспасты: кратные, потенциальные и сложные. В нашем изложении ограничимся рассмотрением кратных полиспастов.
Кратностью полиспастов (обозначаемой числом m) называется число ветвей гибкого элемента полиспаста, на которые распределяется вес поднимаемого груза.
В кратных полиспастах (рис.5,а), где составляющие их блоки смонтированы в двух обоймах – неподвижной 1, и подвижной 2, а гибкий элемент, прикрепленный к обойме 1, последовательно огибает блоки, можно определить отношение скорости движения свободного конца гибкого элемента к скорости подъема подвижной обоймы 2 с грузом по формуле:
V = mv,
Где: V - скорость свободного конца гибкого элемента.
V – скорость подъема груза.
Одновременно зависимость между путями, пройденными за единицу времени свободным концом гибкого элемента, и поднимаемым грузом (рис.5,а) будет:
H = mh
Числом m, но в обратной зависимости определяется в кратных полиспастах отношение между весом поднимаемого груза Q и натяжением свободного конца гибкого элемента – тягового усилия P;
В кратных полиспастах, используемых для выигрыша в силе, поднимаемый груз подвешивается к подвижной обойме, а тяговое усилие прикладывается к свободной ветви гибкого элемента, сбегающего с последнего неподвижного блока (рис.5,а) или с последнего подвижного блока (рис.5,б).
Расчет натяжения гибких элементов в полиспастах, исходит из следующих положений: груз Q, в величину которого входит и вес подвижной обоймы с блоками, а также и грузозахватные детали в рассматриваемом нами случае (рис.5,а), подвешен на 4 ветвях гибкого элемента. Пренебрегая жесткостью каната и сопротивлением трения, можно было бы написать, что натяжение каждой ветви:
В действительности же эти натяжения, как упоминалось ранее, не могут быть одинаковыми, причем наименьшее натяжение S будет ближайшим к точке закрепления гибкого элемента, а для остальных его ветвей натяжения будут соответственно равны:
; и
Независимо от количества ветвей гибкого элемента, на которых подвешен груз Q сумма натяжения ветвей (обозначенных через S S S S ) должна быть равна Q. Руководствуясь этим положением и представляя все ветви гибкого элемента перерезанными, составим уравнение равновесия для первой группы полиспастов (рис.5,а), когда свободная ветвь гибкого элемента сбегает с неподвижного блока:
В этом уравнении выражение в скобках является геометрической прогрессией. Суммируя это выражение получают:
Тогда минимальное натяжение в ветви полиспаста:
Путь, проходимый силой P при подъеме груза Q на высоту h, определяется равенством : H = mh