Лабораторная работа: Термометрия понятие и принципы
Жидкостные термометры запаяны с обеих концов, поэтому более удобны в обращении, что послужило причиной их широкого распространения.
К недостатком их можно отнести нелинейность температурной зависимости объёмов, что делает необходимым калибровать их по газовым термометрам. Они отличаются также инерционностью (время вхождения в равновесное состояние со средой не менее 10 минут ), большой собственной теплоёмкостью до 10 Дж/К и размерами рабочей части. Диапазон их работы ограничен с одной стороны температурой кристаллизации, а с другой – температурой кипения жидкости.
1.3.3. Твердотельные термометры.
1.3.3.1. Биметаллические термометры -используют различие в коэффициентах теплового линейного расширения разных металлов. Скреплённые вместе, как показано на рис.3, пластинки при изменении температуры изгибаются или закручиваются. Величина деформации зависит от температуры, поэтому снабдив пластины механизмами и шкалами можно снимать прямые показания температуры.
Достоинства биметаллических термометров – простота изготовления, механическая прочность. Возможность встраивания в системы автоматики и телемеханики. Недостатки – низкая чувствительность, проявление «усталости» металлов и отсюда – необходимость частой проверки и калибровки по эталонным термометрам.
1.3.3.2. Термопары – представляют собой два различных проводника, соединенных сваркой или пайкой. Металлы должны иметь как можно большую разницу в работе выхода электронов, тогда между ними устанавливается контактная разность потенциалов, величина которой зависит от температуры зоны контакта. Для термопары используют обычно хорошо изученные пары металлов, например, медь констант, хромель-алюмель, платина-родий и другие.
Для измерения температуры термопарой её спай вводится в исследуемую среду, разность потенциалов её свободных концов измеряется каким либо потенциометром или переводится в градусы посредством градуировочного графика или переводного коэффициента , получаемого из формулы ЭДС=Т.
Для абсолютных измерений термопару калибруют по газовому или иному эталонному термометру. Значительно чаще приходится измерять разность температур, тогда применяют дифференциальную термопару. Она представляет собой две одинаковые термопары, включённые навстречу друг другу ( рис.4 ). Спаи помещают в те места, разность температур которых необходимо измерить. Если спай одной из них поместить в среду с известной и стабильной температурой, например, в тающий лёд, то после соответствующей градуировки дифференциальной термопарой можно производить и абсолютные температурные измерения.
Достоинства термопар – малые, практически, точечные размеры рабочего тела, малая инерционность и теплоемкость, возможность дистанционных измерений, большой диапазон измеряемых температур – от сверхнизких до точки плавления применяемых металлов. Недостаток – зависимость термоЭДС от температуры носит нелинейный характер, что влияет на точность измерений.
1.3.3.3. Термометры сопротивления используют свойство чистых металлов сплавов и полупроводников менять своё сопротивление при изменении температуры. Для металлов это свойство описывается выражением R=R0 Ч(1+t), где R0 - сопротивление при 0 С, - температурный коэффициент сопротивления данного металла, t – температура по шкале Цельсия. Для металлов величина равна 0.4-0.6% при изменении температуры на один градус. Для полупроводников зависимость иная – с ростом температуры сопротивление убывает, причём, более существенно ( в 8-10 раз ), чем у металлов.
Термометры сопротивления уступают термопарам по инерционности, собственной теплоёмкости, размерами. Нелинейность зависимости R = f(t) у них больше, поэтому точность измерения ниже. К достоинствам можно отнести измерительную схему, где за счёт использования внешнего источника можно повысить чувствительность измерений. Как правило измерение производиться мостовым методом.
1.3.4. Оптическая термометрия.
При наличии теплового движения молекул вещества тело всегда является источником электромагнитного излучения. Интенсивность этого излучения и его спектральный состав связаны с температурой. Для идеализированного абсолютного чёрного тела энергия, излучаемая с единицы поверхности в единицу времени определяется законом Стефана-Больцмана: Rэ = T4 ,где , - постоянная величина, Т – абсолютная температура. Основанные на этом законе термометры носят название радиационных пирометров (рис.5).
Измерить величину R технически очень трудно, поэтому более распространены яркостные пирометры, в которых яркость свечения исследуемого тела сравнивается с яркостью тела, температура которого известна. Схематически устройство яркостного пирометра показывает рис.6. Обычно в качестве тела сравнения берут вольфрамовую нить специальной электролампы, питаемой от стабильного источника тока. Меняя ток этой лампы можно выровнять её яркость с яркостью исследуемого тела, в этом состоянии температуры тел одинаковы. Температуру нити лампы сравнения определяют по току, при этом шкалу миллиамперметра градуируют непосредственно в градусах.
Пирометр представляет собой зрительную трубу, позволяющую рассматривать удаленные объекты. Нить лампы сравнения устанавливается в фокальной плоскости окуляра. В эту же плоскость вращением объектива проецируется изображение объектива. При правильной настройке оптической части нить лампы сравнения наблюдается на фоне объекта.
Нить лампы сравнения нельзя нагревать выше определенной температуры (14000 С), поэтому для расширения предела измеряемых температур в оптическую схему пирометра включают светофильтр, ослабляющий яркость исследуемого тела с точно известной кратностью.
Яростный пирометр показывает действительную температуру лишь тогда, когда тело и нить одинаково близки по оптическим свойствам к абсолютно черному телу. Поэтому для получения истинного значения температуры в полученный результат вводят поправку, которая зависит как от материала излучающего тела, так и от его температуры. В данном случае для этого используют специальные таблицы ( см. приложение. ). Сначала по таблице 1 выбирают коэффициент излучательной способности , зависящий от материала излучающего тела. Затем по таблице 2 находят истинное значение температуры. При этом используют метод интерполяции – усреднения. Пусть, например, излучающий материал – никель, а показанная пирометром температура 15500 С. Тогда по таблице 1 находим =0.36, а с помощью табл. 2 вычисляем истинную температуру как бы «организуя» недостающие строки и колонки в табл. 2. Измеренная температура лежит в интервале 1400-16000 С. Из колонок 1400 и 1600 берем значения для =0.35 и 0.40 и вычисляем сколько градусов приходится на 0.01 излучательной способности. (( 1550-1530 )/(0.40-0.35))Ч0.01=40 С; (( 1790-1760)/( 0.40-0.35))Ч0.01=60 С
Строим дополнительный фрагмент табл.2
1400 | 1600 | |
0.35 | 1550 | 1790 |
0.36 | 1546 | 1784 |
0.37 | 1542 | 1778 |
и т.д.
По средней строке полученной таблицы находим истинную температуру
В отдельных случаях применяют так называемый цветной пирометр, когда температуру определяют на основании закона Вина, связывающий температуру излучающего тела с длиной волны, на которую приходится максимум его излучатель ной способности. Цветной пирометр включает в себя спектральный прибор, разлагающий нагретого тела в спектр, и фотоэлектронную приставку, измеряющую распределения интенсивности в этом спектре. Оптические пирометры имеют невысокую точность, но позволяют производить дистанционные измерения, что во многих процессах металлургии, в химии, физике и астрономии очень актуально.
2. Практическая часть.
2.1.Температурные шкалы
а) Какова температура человеческого тела в шкалах Цельсия, Кельвина и Фаренгейта?
б) Сколько градусов Цельсия в одном градусе Фаренгейта?
в) Переведите 500 F в градусы Кельвина.
2.2 Градуировка термометра сопротивления.
Термометр сопротивления изготовлен из тонкой медной проволоки, намотанной на бумажный каркас, помещенный в защитный стеклянный футляр ( в пробирку ). В холодном состоянии сопротивление провода близко к 80 Ом.
Сопротивления термометра в данной работе измеряется при помощи индикатора сопротивления ММВ ( рис. 7 ).