Лабораторная работа: Высоковольтные выключатели
Содержание
1. Цель работы
2. Основные сведения
2.1 Краткая теория
2.2 Конструкция выключателя ВВ/TEL
2.3 Конструкция полюса
2.4 Конструкция вакуумной дугогасительной камеры
3. Принцип действия модуля
3.1 Включение
3.2 Отключение
3.3 Блоки управления
4. Технические характеристики ВВ/TEL
5. Область применения и условия выбора выключателей
6. Программа работы
7. Структура отчета
Литература
1. Цель работы
Изучение конструкции, принципа действия и области примения ваккумных выключателей.
2. Основные сведения
2.1 Краткая теория
Электрическая прочность вакуума (10-6 мм. рт. ст. ) значительно выше прочности других сред, применяемых в выключателях, Объясняется это увеличением длины среднего свободного пробега электронов, атомов, ионов и молекул по мере уменьшения давления. В вакууме длина свободного пробега частиц превышает размеры вакуумной камеры. В этих условиях удары частиц о стенки камеры происходят значительно чаще, чем соударения между частицами. При высокой электрической прочности вакуума (≈30 кВ/мм) расстояние между контактами может быть очень малым (от 2÷2,5 см) , поэтому размеры дугогасительной камеры могут быть также относительно небольшими. Процесс восстановления электрической прочности промежутка между контактами при отключении тока протекает в вакууме значительно быстрее, чем в газах.
Для надежности работы вакуумного выключателя и увеличения срока его службы весьма важную роль играет износостойкость контактов, которые рапыливаются во время горения дуги. Металлы, используемые для контактов, должны обладать механической прочностью, высокой проводимостью, стойкостью относительно эрозии и сваривания. Применение получили бипарные сплавы: Cu-Bi, Cu-Te, Ag-Bi, и др.
В лаборатории представлены вакуумные выключатели промышленной группы «Таврида-Электрик» (BB/TEL), предназначенные для работы в закрытых распределительных устройствах 6-10-20 кВ с ячейками КСО (камера стационарная одностороннего обслуживания) или КРУ (комплексное распределительное устройство).
2.2 Конструкция BB/TEL
Рис. 2.1. Конструкция BB/TEL
В отличиe от большинства существующих выключателей, в основу устройства BB/TEL заложен принцип раздельного управления контактами вакуумных дугогасительных камер фаз аппарата. Данный принцип позволил существенно уменьшить количество движущихся частей привода.
Вакуумные дугогасительные камеры установлены внутри полых опорных изоляторов, закрепленных на общем основании. Подвижные контакты дугогасительных камер жестко соеденины со своими приводами посредством изоляционных тяг, которые также располагаются внутри опорных изоляторов. Таким образом, все элементы конструкции полюса имеют общую ось симметрии, вдоль которой детали механизма совершают возвратно-поступательное движение. Это позволяет существенно упростить кинематическую схему BB/TEL, отказаться от применения нагруженных шарнирных и рычажных звеньев, что, в свою очередь, делает возможным создание коммутационного аппарата с высоким механическим ресурсом, не требующим обслуживания и регулировки в течении всего срока слыжбы. Так ресурс по коммутационной стойкости при номинальном Iном, операций ВО (включение – отключение) составляет – 50000, при токах короткого замыкания IO НОМ, операций ВО составляет – 100. Срок службы до списания – 25 лет.
Приводы фаз располагаются внутри основания выключателя. Они механически соеденены между собой посредством общего вала, который выполняет три функции:
обеспечивает синхронизацию фаз, предохраняя от неполнофазных режимов работы;
приводит в действие вспомогательные контакты выключателя;
обеспечивает механическую блокировку работы РУ, в котором установлен BB/TEL и управляет визуальными индикаторами положения BB/TEL.
2.3 Конструкция полюса выключателя
Рис. 2.2. Электромагнитный привод с магнитной защелкой.
Электромагнитный привод может находиться в двух устойчивых положениях – отключено и включено.
Фиксация якоря в этих положениях производится без применения механических защелок и обеспечивается:
- силой упругости отключающей пружины в положении отключено;
- силой, создаваемой остаточным магнитным потоком кольцевого постоянного магнита, в положении включено.
Операция включения и отключения производится путем подачи управляющих импульсов напряжения разной полярности на однообмоточнуй катушку электромагнитного привода.
2.4 Конструкция вакуумной дугогасительной камеры
В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда, называемого «вакуумная дуга». Существование вакуумной дуги поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, является проводником тока и поддерживает его протекание между контактами до момента перехода тока через ноль. В этот момент дуга гаснет, а оставшиеся пары металла мгновенно (за 7-10 микросекунд) конденсируются на поверхности контактов и других деталей дугогасительной камеры, восстанавливая электропрочность вакуумного промежутка. В это же время на разведенных контактах восстанавливается приложенное к ним напряжение. Если при восстановлении напряжения на поверхности контакта (как правило, анода) остаются перегретые участки, они могут служить источником эмиссии заряженных частиц, вызывающих пробой вакуумного промежутка, с последующим протеканием тока через него. Для избежания подобных отказов необходимо управлять вакуумной дугой, равномерно распределяя тепловой поток по всей поверхности контактов. Наиболее эффективным способом управления дугой является наложение на нее продольного (сонаправленного с направлением тока) магнитного поля, которое индуцируется самим током. Данный способ применен в вакуумных дугогаси-тельных камерах, которые разработаны и производятся предприятием «Таврида Электрик». Эта конструкция имеет явные преимущества:
- высокая отключающая способность;
- минимальные габариты и вес;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--