Научная работа: Активность основных карбоксипептидаз в тканях мышей при введении тестостерона и прогестерона
Апробация и публикации. Материалы диссертации доложены на IV Пущинской конференции молодых ученых (Пущино, 1999 г.), на XXXVIII Международной студенческой конференции ”Студент и научно-технический прогресс” (Новосибирск, 2000 г.) и на итоговых научных конференциях ПГПУ (1998, 1999, 2000). По результатам исследования опубликовано 5 статей.
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1. Нейропептиды и их обмен
Нейропептиды – это полифункциональные высокоактивные вещества пептидной природы, которые играют важную роль в реализации и регуляции различных физиологических и поведенческих реакций организма.
Нейропептиды играют важную роль в адаптационных процессах, проявляют анальгетические эффекты, участвуют в формировании пищедобывательного и полового поведения [26, 28, 30, 35, 140, 169, 207]. Многие из этих веществ вовлекаются в регуляцию полового созревания [2, 4, 38, 40]. Нейропептиды влияют на половую дифференциацию организма (ГнРФ, ЛГ, ФСГ, пролактин [24, 27, 39, 42, 43]), на процессы внимания и памяти (например, АКТГ и α-меланотропин - стимуляторы запоминания и внимания), на эмоциональное поведение (тиролиберин, меланостатин, кортиколиберин - стимуляторы эмоционального поведения), обладают анальгезирующим действием (нейротензин, опиодные пептиды) [34, 36].
Уровень нейропептидов определяется соотношением скоростей их синтеза и деградации.
Нейропептиды синтезируются в организме, как правило, в виде высокомолекулярных неактивных предшественников (препропептидов) [22]. В состав последних могут входить аминокислотная последовательность как одного, так и нескольких нейропептидов. Известно много белков, содержащих в своей структуре последовательности нейропептидов: предшественник гонадотропин-рилизинг-фактора, проопиомеланокортин, препроэнкефалин А, продинорфин (препроэнкефалин В) и другие [1, 32]. В частности, в состав предшественника гонадотропин-рилизинг-фактора входит ГнРФ и гонадолиберин-ассоциированный пептид.
Все препропептиды содержат на N-конце сигнальную последовательность из 15-20 остатков гидрофобных аминокислот. Нейропептиды, входящие в состав предшественника, как правило, ограничены с C- и N-концов (фланкированы) парами остатков основных аминокислот – аргинина и лизина [1, 3, 65, 81, 113, 120, 147].
Сигнальная последовательность, взаимодействуя с рецепторами эндоплазматического ретикулума, способствует переносу предшественника нейропептида в просвет ретикулума. В цистернах эндоплазматического ретикулума под действием сигнальной пептидазы происходит отщепление сигнальной последовательности, а также N-гликозилирование и формирование характерной для полипептида третичной структуры, которая препятствует обратному выходу белка в цитоплазму. Посттрансляционная модификация, включающая гликозилирование, амидирование, ацетилирование или сульфирование, предотвращает нарушение процессинга и образование нетипичных пептидов [1, 19].
Предшественники нейропептидов синтезируются на рибосомах гранулярного эндоплазматического ретикулума. Как сказано выше, препропептиды не обладают функциональной активностью. Для получения активных форм, они подвергаются посттрансляционному процессингу, одним из основных механизмов которого является ограниченный протеолиз [3, 5, 20, 21].
Процессинг биологически активных пептидов осуществляется при передвижении молекул пропептидов по гранулярному эндоплазматическому ретикулуму, комплексу Гольджи и в секреторных везикулах [123]. Секреторные везикулы содержат полный набор ферментов, необходимых для процессинга и специальные системы поддержания pH внутри везикул [22].
Процессинг нейропептидов внутри секреторных везикул включает в себя эндо- и экзопротеолитические реакции. Эндопротеолиз осуществляется при действии трипсиноподобных протеиназ (проопиомеланокортин-превращающего фермента [176, 177], продинорфин-превращающего фермента [95, 130], тиоловой прогормонконвертазы [57, 58], субтилизиновых эндопептидаз фурина, PC1, PC2, PC3 и PC4 [238]). В результате происходит расщепление пропептидов по парам остатков основных аминокислот [22, 258]. Продукт, образовавшийся после действия эндопептидаз, далее подвергается экзопротеолизу с участием аминопептидазо-В- и/или карбоксипептидазо-В-подобных ферментов. В результате происходит удаление ”лишних” N- и/или С-концевых остатков основных аминокислот.
Известно, что в различных тканях из одного белкового предшественника образуются различные нейропептиды [1, 32]. Так из проопиомеланокортина в аденогипофизе образуются преимущественно АКТГ, β-липотропин и β-эндорфин. В промежуточной доле гипофиза они подвергаются дальнейшему расщеплению с образованием α-меланоцитстимулирующего гормона и фрагментов β-эндорфина [1]. Тканевая специфичность, по-видимому, может быть связана с различным набором ферментов в разных тканях и/или с различными способами регуляции их активности. Поэтому представляет интерес изучение ферментов процессинга со сходной (но не идентичной) субстратной специфичностью. Такие исследования интересны не только для выяснения вопросов, связанных с функционированием данных энзимов, но и для понимания механизмов образования различных нейропептидов из одних и тех же предшественников в разных тканях. Поскольку карбоксипептидазо-В-подобные ферменты, то есть отщепляющие остатки основных аминокислот (аргинина и лизина) с карбоксильного конца пептидов, участвуют в конечной стадии процессинга биологически активных пептидов, то их изучение представляет особый интерес.
1.2. Физико-химические свойства, субстратная специфичность и биологическая роль карбоксипептидазо-В-подобных ферментов
К настоящему времени в тканях человека и животных обнаружен ряд таких ферментов: КП B (КФ 3.4.17.2), КП N (КФ 3.4.17.3), КП M (КФ 3.4.17.12), КП U, КП H (КФ 3.4.17.10), ФМСФ-ингибируемая КП и др.
КП B, КП N, КП M, КП U и КП Н отщепляют аргинин и лизин с С-конца пептидов [50, 76, 91, 102, 104, 120, 122, 141, 142, 143, 227, 247]. КП B способнa также (но с меньшим сродством) отщеплять остатки ароматических аминокислот [50]. Все вышеперечисленные карбоксипептидазы, кроме КП U и КП Н, обладают и эстеразной активностью [50, 76, 91, 102, 104, 120, 122, 141, 142, 143, 144, 227, 247]. Причем у КП N и КП M она намного превышает пептидазную [91, 102, 104, 143, 227, 247].
КП Н имеет кислый оптимум рН 5,5-6,0 [185, 234]. Другие карбоксипептидазы проявляют максимальную активность в нейтральной либо слабощелочной среде. В частности, оптимум рН для КП B, КП N и КП M равны, соответственно, 7,0-9,0; 7,6 и 7,0 [50, 91, 102, 212, 227].
Ионы Со2+ повышают пептидазную активность КП B, КП N, КП M, КП Н [91, 143, 227, 247, 284], но снижают эстеразную активность КП B [284], а также пептидазную активность КП U [76, 142]. Ионы Cd2+ снижают активность КП B [284], КП N [143, 227], КП M [247]. Хелатирующие агенты (ЭДТА, о-фенантролин), и дикарбоновые кислоты, такие как ГПЯК, АПМЯК и ГЭМЯК, ингибируют КП В, КП N, КП M, КП Н [50, 76, 89, 91, 102, 142, 143, 144, 147, 196, 195, 212, 227, 247, 276].
Карбоксипептидазы КП B, КП N, КП M, КП U и КП H являются металлокарбоксипептидазами и содержат в своих активных центрах ионы Zn2+ [89, 108, 121, 143, 181, 262, 263].
КП В (Mr 34 кДа) [74], КП M (Mr 62 кДа) [91, 247] и КП Н [89, 181, 262] состоят из единственной полипептидной цепи. Остальные карбоксипептидазы состоят из нескольких субъединиц: КП N (Mr 280 кДа) – из четырех (двух с Mr 88 кДа, не обладающих ферментативной активностью, одной с Mr 55 кДа и одной с Mr 48 кДа) [173]; КП U – из восьми [144, 276].
Аминокислотные последовательности металлокарбоксипептидаз схожи между собой. В частности, аминокислотная последовательность активных субъединиц КП N на 43% идентична последовательности КП H, на 41% - КП M, на 29% - КП A и на 18% - КП B, аминокислотная последовательность КП M на 41% идентична КП H, на 15% - КП B и КП A [91, 246, 249].
КП B, КП N, КП M, КП U, КП H синтезируются в виде неактивных проформ, которые приобретают активность под действием трипсина или трипсиноподобных ферментов [89, 91, 92, 122, 141, 142, 181, 249].
Основные карбоксипептидазы отличаются распределением в тканях и органах.
КП B обнаружена в экзокринных клетках поджелудочной железы и в поджелудочном соке [50].
КП N присутствует в плазме крови, имеется единичная работа по обнаружению КП N в микросомах плаценты [161].
КП M широко распространена во всех органах и тканях. Наибольшая активность фермента обнаружена в человеческой плаценте, в 3-4 раза ниже - в почках, еще в 2-2,5 раза ниже - в легких [248]. В нервной ткани активность фермента на порядок ниже, чем в плаценте. Активность КП M в периферических нервах выше, чем в головном мозге [209].
Биологическая роль карбоксипептидаз разнообразна.
КП B участвует в переваривании белков пищи [212].
КП N, КП M, КП U, в отличие от КП B, способны вовлекаться в обмен различных пептидов. В частности, есть данные о том, что КП N (наряду с КП M и КП U) может вовлекаться в расщепление брадикинина [77, 91, 160, 239, 241, 247], инактивацию анафилотоксинов [69, 76, 141, 142, 229], а также (наряду с КП M) – в превращения предшественников энкефалинов [91, 247, 248]. Кроме этого, КП N способна участвовать в постсинаптической модификации креатинкиназы [270], енолазы [279]. Показано, что активность КП N изменяется при гипербрадикинизме и различных легочных заболеваниях (например, астме) [103].
Предполагают, что КП U вовлекается в процессы свертывания крови и локального воспаления при ревматоидном артрите [77].
1.2.1. Карбоксипептидаза Н
Карбоксипептидаза Н (КП Н, энкефалинконвертаза, карбоксипептидаза Е, КФ 3.4.17.10) впервые была выделена и охарактеризована в 1982 г. Fricker L.D. и Snyder S.H. из мозга, гипофиза и хромаффинных гранул надпочечников [120]. Она обладает, практически, абсолютной специфичностью по отношению к пептидным субстратам с С-концевыми основными аминокислотами [14, 16, 98, 275]. КП Н хорошо отщепляет остатки -Lys и -Arg от Arg8 -вазопрессин-Gly-Lys-Arg, а также превращает 125 I-Met-энкефалин-Arg и 125 I-Met-энкефалин-Lys в 125 I-Met-энкефалин [147, 152]. Фермент отщепляет остатки -Lys15 -Lys16 -Arg17 с карбоксильного конца фрагмента АКТГ (АКТГ1-14 ) и остатки -Arg с С-конца гиппурил-L-Arg и Leu-энкефалин-Arg [275]. КП Н с очень низким сродством отщепляет остаток гистидина с карбоксильного конца проокситоцина [215, 251].
Карбоксипептидаза Н является тиолзависимым металлоферментом, в активном центре которого находится Zn2+ [151, 152]. Фермент имеет оптимум рН 5,5-6,0 [98, 132, 152, 242, 281], pI 4,9 [185], ингибируется CuCl2 , HgCl2 , р-хлормеркурфенилсульфатом, АПМЯК, 2-меркаптометил-3-гуанидилэтилтиопропановой кислотой, ЭДТА и 1,10-фенантролином [98, 122, 147, 152]. Наиболее эффективными ингибиторами являются ГЭМЯК и ГПЯК с Ki 8,8 и 7,5, соответственно [89, 118, 234, 260]. КП Н ингибируется Met- и Leu-энкефалинами, веществом Р, вазопрессином, окситоцином, тиреотропин-рилизинг-фактором [150, 225, 235]. С окситоцином и АКТГ ингибирование проявляется уже при концентрации 2-20 мМ [150]. Ki для Met-энкефалина, Leu-энкефалина, Met-энкефалин-Arg6 -Gly7 -Leu8 и Met-энкефалин-Arg6 -Phe7 равны, соответственно, 12,0, 6,5, 7,0 и 5,5 мМ [150]. Лизин и аргинин являются конкурентными ингибиторами КП Н. Ki для аргинина и лизина равны, соответственно, 4,6±1,3 и 7,6±1,9 [146]. Бромацетил-D-Arg, необратимый ингибитор КП В и КП N, также ингибирует и КП Н [118]. Сульфат цинка, хлорид кальция, N-этилмалеимид и ФМСФ не влияют на активность КП Н [98]. Фермент активируется ионами Co2+ в 5-10 раз, ионами Ni2+ в 2-3 раза, [89, 98, 122, 152, 234, 259, 260]. КП Н способна связывать ионы Ca2+ [211]. При повышенной температуре она дестабилизируется ионами Ca2+ и стабилизируется низкой концентрацией этиленгуанидинтетрауксусной кислотой [211]. Ионы Ca2+ не влияют на активность фермента [211]. Этиленгуанидинтетрауксусная кислота в микромолярных концентрациях активирует КП Н. В этом случае происходит изменение Vmax , а не Km [211]. Уменьшение pH и увеличение концентрации ионов Ca2+ индуцируют агрегацию данного фермента [255]. Освобождение КП Н и инсулина из изолированных клеток Лангерганса крысы ингибируется удалением ионов Ca2+ из среды [135, 136].