Научная работа: Густой дым как поток продуктов горения

Многие эксперименты с электростатическими зондами показывают, что в некоторых пламенях существуют повышенные электронные температуры. Так, например, в недавней работе Брэдли и Меттьюса, в которой использовались двойные зонды при пониженных давлениях, были обнаружены температуры до 30000 К. Электроны, обладающие энергией, немного превышающей потенциал ионизации, способны легко ионизировать атомы и молекулы. Именно эти электроны являются источником ионизации в пламенях, где обнаружены повышенные электронные температуры.

Логично предположить, что электроны при температурах порядка 30000 К вызовут ионизацию с большими скоростями. Недавняя работа показала, что в пламенях происходит не только хемоионизация, но и образует значительное количество ионов О2 + , которые могут возникать в присутствии электронов при повышенных температурах. Предполагается, что последние появляются в результате взаимодействия с возбуждёнными молекулами СО2 , которые в свою очередь образуют при рекомбинации молекул окиси углерода с атомарным кислородом.

Однако повышенные электронные температуры были обнаружены не во всех пламенях с повышенной степенью ионизации. Более того, при изменении скорости ионообразования были получены плоские плато, соответствующие току насыщения, при атмосферном давлении в широком интервале приложенных напряжений. При этом напряжённость поля в зоне горения имела порядок кВ/см и, таким образом, была достаточна для значительного повышения электронной температуры. Это приводит к выводу, что в различных пламенях могут играть важную роль различные механизмы ионообразования. Выяснение роли электронов повышенной энергии как одного из возможных источников ионизации требуется дальнейшего излучения.

Были предложены два механизма, благоприятные с термохимической точки зрения:

СН+ОСНО+- ,

и

СН (А2 Δ) +С2 Н2 С3 Н3 +- .

Таким образом, представленный выше текст показывает, что в процессе горения происходит относительно неоднородный распад молекул, образование ионов и свободных радикалов. Потому, многие молекулы, избежавшие полного окисления, могут быть трансформированы при столкновении со свободными радикалами, в результате в ничтожных дозах образуются множества веществ, изначально не входящие в состав горючего.

3. Конвекция над пламенем

Рисунок 1. 1 – окислительное пламя; 2 – восстановительное; 3 – снова окислительное; 4 – наиболее близкий к пламени горячий (100–150°С и более) поток воздуха; 5 – вторичный воздушный поток с относительно малыми (50–100°С) температурами

Стрелками указано направление движение восходящих воздушных потоков. Зеленой линией примерно показано распределение температур по высоте пламени.

При нагреве около пламени воздух расширяется, за счет чего происходит уменьшение его плотности. Как известно, среда, имеющая меньшую плотность начинает подниматься по закону Архимеда, если попадает в объем среды с большей плотностью. Таким образом, теплый воздух поднимается наверх вдоль пламени, участвуя в попутно протекающих реакциях горения. При подъеме, происходит перемешивание нагретого воздуха с окружающим. В результате протекающего при этом процесса теплообмена, общий объем разогретого воздуха увеличивается за счет поступления дополнительного количества частиц извне (разбавление), но одновременно происходит охлаждение. Как уже говорилось, при прохождении вблизи пламени, воздух участвует в процессах окисления, в следствие чего обогащается продуктами горения, молекулярные массы которых, как правило, выше, чем среднее значение молярных масс веществ, составляющих воздух. Поэтому, хотя продукты горения, будучи разогретыми, и поднимаются, плотность воздуха, загрязненного ими значительно выше, чем у чистого при той же температуре. В результате разбавления, сопровождающегося остыванием, скорость восходящего потока над пламенем снижается по мере подъема. Изначально увлекаемые с потоком теплого воздуха, перемещающиеся за счет диффузии и разбавления все далее от наиболее горячего центра потока, все менее подталкиваемые вверх за счет конвекции, твердые частицы, начинают опускаться. В зависимости от формы и массы, а так же силы ветра, частоты и скорости встречающихся конвекционных потоков, частицы оседают на определенном удалении от источника.

Однако не только газы подвергаются конвекционному подъему. На аналогичных явлениях, имеющих место в жидкостях возможно го

Принцип работы фитильковых осветительных устройств, рассмотрим на примере действия свечи. На рисунке выше показано пламя свечи и указаны основные его области. Пламя свечи разогревает воск (или парафин), который начинает плавиться. Расплавленный воск поднимается по волокнам фитиля, и на определенном его участке испаряется под действием высоких температур, а уже непосредственно пары – воспламеняются. Еще Майкл Фарадей думал о законах природы, не позволяющих пламени прогореть до конца фитиля (опускаться до жидкой фазы). И действительно: пламя свечи зависает на некотором расстоянии от «котла» с воском. Что мешает пламени, опуститься до поверхности расплавленного воска? Ответ: пламя не может распространиться вниз по фитилю, так как его сдерживает жидкий воск, которым пропитана часть фитиля, находящаяся между жидкостью и пламенем. Дело в том, что парафин (и масло), в отличие от бензина и спирта, имеет крупные молекулы, которые обладают малой подвижностью. Поэтому парафин при температуре ниже 70–84°С находится в твердой фазе. Большое количество звеньев в молекуле парафина так же препятствует его быстрому испарению. Температура кипения парафина многократно превышает температуру его плавления. Поэтому, парафин, не разогретый до достаточной температуры, не способен интенсивно испаряться, а значит и гореть. Таким образом, растопившийся, но не испаряющийся парафин блокирует распространение пламени вниз.


4. Экология и горение

С точки зрения экологии, горение отвечает сразу за 3 негативных фактора. Во-первых, чаще всего в качестве окислителя используется кислород воздуха. А в настоящее время, из-за значительного сокращения площадей леса, и чрезмерного расхода воздуха транспортом и промышленностью, есть некоторый риск развития кислородной недостаточности в будущем не столько в глобальном, сколько в локальном масштабе. То есть, в масштабах планеты его достаточно. Но например, недостаточность содержания кислорода, спровоцированное массовым расходом воздуха в металлургических цехах ощущается его рабочими. Известно, что падение концентрации кислорода с 22 до 17% уже сильно сказывается на самочувствии человека и его способности решать те или иные задачи. Очевидно, что если такое падение произойдет в цехе с опасными и ответственными процедурами, неспособность персонала справиться с ситуацией может привести к катастрофическим последствиям.

Во-вторых, помимо золы и углей, все остальные продукты горения – газообразные. Копоть является взвесью мелкодисперсных частиц. В зависимости от источника и мощности секундного выброса копоти, она может оседать в виде мелких гранул сажи в течении нескольких часов. Либо, если мощность копытевыделения значительна, – странствовать и оседать в виде нитевидных образований, иногда хлопьев. Сама по себе копоть не является ядовитым веществом. Это микрогранулы, состоящие из фактически чистого углерода.

Отделение газообразных продуктов горения от остальных компонентов атмосферы – используется редко из-за сложности реализации. То есть, обычно, пройдя очистку от твердых частиц, разогретые газы выходят в атмосферу в виде дыма, накапливаясь в ней.

В-третьих, помимо веществ, непосредственно участвовавших в процессе горения, из-за действия высоких температур, образуется масса побочных продуктов, при чем даже вне пламени. К примеру, при высоких температурах (более 1000°С) происходит окисление азота, а его оксиды – весьма токсичны. В процессе горения сложных веществ, особенно органики, для полного окисления многоатомных молекул, кислорода может попросту не хватать. В результате неполного сгорания молекул жиров, полимеров, углеводородов, происходит образование веществ, не содержавшихся изначально в топливе. В том числе, весьма токсичных. Если молекулы даже горючего вещества не успевают встретиться и провзаимодействовать с молекулами кислорода и других окислителей в зоне высоких температур, то в воздух попадают еще и пары самых разных соединений. В том числе смолы. Вдыхание таких компонентов приводит к тому, что смолы, жиры и их производные оседают в легких, препятствуя попаданию кислорода в кровь. И это самый безобидный случай. Взаимодействуя с влагой в легких, вредные вещества разрушающе влияют на их ткани на локальном уровне. Разумеется, чем больше стаж работы в таких условиях, тем выше шанс подхватить какой-нибудь легочный недуг, вроде бронхиальной астмы. К счастью, легкие имеют механизмы самоочищения, однако некоторые компоненты табачного дыма блокируют их работу.

И все бы было ничего, но жжем и дымим мы уже слишком много, и Матушке-Земле не хватает ресурсов и времени, чтобы справиться с общим потоком вырабатываемых загрязнений. То есть, в настоящее время происходит накопление (повышение концентрации в глобальном масштабе) многих продуктов горения в атмосфере. А значит, сама атмосфера постепенно начинает «вреднеть». И не вулканы в этом виноваты, а именно мы – обнаглевшие «цари природы».

4.1 Дым и его свойства

Дым представляет собой концентрированную смесь продуктов горения, состоящих, главным образом из достаточно тяжелых молекул углеводородов, оксидов присутствующих в горючем элементов и паров воды. Если допустить, что в очаге горения все углеводороды разлагаются полностью на воду и углекислоту, то такое пламя не должно создавать большого количества дыма. И весь видимый дым в этом случае будет представлять собой почти чистый водяной пар. Дым будет иметь сравнительно малую плотность, по цвету будет светлым и будет быстро рассеиваться. Разумеется, и привычного запаха гари чувствоваться так же не будет. К примеру, чистый метан, горя на воздухе вообще не коптит и не дымит. Реальный дым является многокомпонентной смесью, и кроме оксидов содержит массу примесей, включая твердые частицы. Поэтому видимые потоки дыма можно смело рассматривать, как поток недогоревших органических масс в совокупности с парами воды и смол. Дым является одним из опасных факторов при пожаре. Его компоненты, раздражают слизистые оболочки и глаза, он содержит мало воздуха, а присутствующий угарный газ блокирует способность красных кровяных телец усваивать кислород. В результате человек или сначала травится, а потом задыхается, или задыхается, а если откачают, испытывает симптомы отравления. Кроме того – дым является фактором, ограничивающим видимость и ориентацию в пространстве. Это таит не меньшую опасность, чем его токсические свойства. Поэтому, существует специальная классификация веществ (преимущественно, используемых в быту и строительстве), по которым горючие вещества делятся в зависимости от способности дымообразования.

К основным свойствам дыма можно отнести следующие: массовая доля примесей в дыму по сравнению с воздухом. То есть то, насколько изменился состав потока воздуха после прохождение через язык пламени. Далее – концентрация вредных веществ, и густота дыма. А так же – экологический приоритет источника загрязнения. То есть, чем больше веществ было окислено, тем выше эффективность печи, тем меньше побочных примесей в дыму. Стало быть, тем выше экологическая (и экономическая) эффективность печи. В данном случае не учитывается расход кислорода.

Понятное дело, что продуктов окисления не может быть больше, чем это обеспечивает секундный объем окислителя, проходящий через зону горения. То есть, можно предположить, что в процессе горения из окислившего потока воздуха, весь кислород полностью перешел в молекулы оксидов. А это значит, что, по закону сохранения вещества, число атомов кислорода до горения равно числу атомов после горения. Однако, если до горения кислород присутствовал как свободный газ, то после кислород содержится как компонент многочисленных молекул оксидов.

Содержание кислорода в воздухе примерно равно 22% по массе. И это означает, что максимум именно эта масса кислорода будет расходоваться на окисление. Так, при сгорании углерода (атомный вес 12) можно считать, что весь кислород перешел в молекулы СО2 . Атомный вес кислорода равен 16. Молекулярный вес кислорода составляет 16х2 = 32 г. / Моль. Масса молекулы образовавшегося СО2 равна 32+12 = 44 атомных единицы массы или, что тоже самое, 44 г. / Моль. Масса 1 Моля воздуха примерно равна 100х16/22 = 72 г. Получается, что при 100%-ом расходе кислорода, воздух будет иметь молярную массу 72г / Моль + 12 г. / Моль (от углерода) = 84 г. / Моль. Такой воздух будет содержать 44 х 100% / 84 = 52,38% двуокиси углерода, тогда как ранее он содержал 22% кислорода по массе.

1 Моль кислорода может быть израсходован на окисление

2 Моль водорода Н2

2/3 Моль СН4

К-во Просмотров: 282
Бесплатно скачать Научная работа: Густой дым как поток продуктов горения