Научная работа: Теория о бесконечности простых чисел-близнецов

Но:

2310 : 13=177,6923...

Оставим в стороне умножение на 2, уже по этой операции видно что удваивание нечётного числа приводит к чётному, и при делении чётного (2310) на нечётное, не всегда приводит к целому числу в результате. Нас же это не всегда не устраивает. Как мы уже говорили, Матрица состоит из нечётных простых чисел, то и результат умножение ряда простых с последующим делением на следующее простое, не может дать целое число, так как это следующее, есть простое, и значит, оно не соприкасается с позади стоящими. Тоесть оно не делимо на них с целым показателем в итоге. А иначе бы это простое небыло бы простым.

Так вот, после первого «удара» уже на втором, третьем.... Система 13 сбивается, и оставляет пары невредимыми. Сколько, об этом позже.

Одна пара на шаге маловероятна, если вообще не вероятна. Долгое время считалось, что чем больше простые числа, тем больше расстояние между ними. В окрестностях целого числа х, расстояние между смежными простыми числами пропорционально логарифму х. Это среднее значение расстояний.Но новые открытия доказали, что в отдельных случаях расстояние может быть значительно меньше.

«Вероятность того, что число Х является простым, приблизительно равна 1/ln x. Это означает, что количество простых чисел в интервале длины А поблизости от Х должно быть примерно равно a/ln x.

Соответственно вероятность того, что два числа вблизи Х оба окажутся простыми, приблизительно равна 1/lnІ x. Ожидаемое же количество простых чисел-близнецов в интервале от x до x + a приблизительно равно a/lnІ x. На самом деле в реальности, ожидаемая величина немного больше, так как если уже известно, что число n простое, то это изменяет шансы, что и n + 2 будет простым. В связи с этим, ожидаемое количество простых чисел-близнецов в интервале [x, x+a] равно Ca/lnІ x. C – постоянная, приблизительно равная 1,3 (C = 1,3203236316...).

Более вероятно, но опять чисто теоретически и чисто иллюзорно, можно представить, что в один момент, на какой, то Матрице, все пары выстроятся в чёткий ряд, с шагом, который проделывает новая Система. Но опять же, на втором внутреннем шаге прежней Матрицы, Система даст сбой, и в итоге будут те, же показатели.

Так работая, Система 13, на Матрице 3-5-7-11 с длиной внутреннего матричного шага в 2310, выстраивает новый внутренний шаг, с новой внутренней системой на новой Матрице 3-5-7-11-13. Теперь этот шаг увеличивается с 2310 до 30 030, то есть в 13 раз. А это значит, что внутренний шаг на Матрице стал длиннее, но количество таких внутренних шагов на Матрице, осталось прежним—БЕСКОНЕЧНЫМ!

Теперь посмотрим на реальное положение дел:

Матрица

Кол-во не пар, на шаге

Кол-во пар на шаге

% пар

Матрица 3-5

2

3

60

Матрица 3-5-7

20

15

42

Матрица 3-5-7-11

246

136

35

Как видим, как бы процентное количество пар не уменьшалось на каждом новом шаге, но количество пар растёт. Система построения Матриц гарантирует жизнь простым и парам.

А есть ли у нас возможность подсчитать количество пар на каждом внутреннем шаге Матрицы?

Матрица 3

К-во Просмотров: 512
Бесплатно скачать Научная работа: Теория о бесконечности простых чисел-близнецов