Отчет по практике: Информатика. Текстовый редактор
2.2 Средство обработки информации MS Word
Microsoft Word – мощное средство обработки информации корпорации Майкрософт, которая имеет множество утилит необходимых для набора и обработки информации.
2.2.1 Тема, задание, цель
Тема - набор и форматирование документов в Word.
Задание - безошибочно набрать около 14 страниц сложного текста, получить основные умения по форматированию.
Цель - получить основные умения по набору текстового и графического материала, привести материал в соответствии с ГОСТ.
2.2.2 Исходные данные и индивидуальное задание
Исходными данными и индивидуальным заданием является электронная книга, выданная руководителем практики и номер задание из списка журнала (6. Ахо.pdf 104-116).
2.2.3 Отчет о выполнении
Отчетом о выполнении данного задания будет набранный и отформатированный текст, приведенный ниже.
ТЕСТ ПО ИНДИВИДУАЛЬНОМУ ЗАДАНИЮ
Уровень 3 1 (1,2)
Уровень 2 1 (0,0,0) 2 (0,1,1)
Уровень1 0 0 0 1 (0,0) 0 1 (0,0)
Уровень 0 0 0 0 0
Рисунок 3.4. а) Числа, приписанные алгоритмом распознавания изоморфизма деревьев.
Уровень 3 1 (1,2)
Уровень 2 1 (0,0,0) 2 (0,1,1)
Уровень 1 1(0,0) 0 1 (0,0) 0 0 0
Уровень 0 0 0 0
Дерево Т2
Рисунок 3.4. б) Числа, приписанные алгоритмом распознавания изоморфизма деревьев.
Тогда изоморфизм двух помеченных деревьев можно распознать за линейное время, если включить метку каждого узла в качестве первой компоненты кортежа, приписываемого этому узлу изложенным выше алгоритмом. Таким образом, справедливо
Следствие. Распознавание изоморфизма двух помеченных деревьев с п узлами, метками которых служат целые числа между 1 и п, занимает время 0(п).
3.3. СОРТИРОВКА С ПОМОЩЬЮ СРАВНЕНИЙ
Здесь мы изучим задачу упорядочения последовательности из п элементов, взятых из линейно упорядоченного множества 5, о структуре которых ничего не известно. Информацию об этой последовательности можно получить только с помощью операции сравнения двух элементов. Сначала мы покажем, что любой алгоритм, упорядочивающий с помощью сравнений, должен делать по крайней мере О (nlogn) сравнений на некоторой последовательности длины n. Пусть надо упорядочить последовательность, состоящую из n различных элементов аг , а2 , . . . , аn .
Алгоритм, упорядочивающий с помощью сравнений, можно представить в виде дерева решений так, как описано в разделе 1.5. На рис. 1.18 изображено дерево решений, упорядочивающее последовательность a, b, c. Далее мы предполагаем, что если элемент a сравнивается с элементом b в некотором узле v дерева решений, то надо перейти к левому сыну узла v при a < b и к правому — при ab.
Как правило, алгоритмы сортировки, в которых для разветвления используются сравнения, ограничиваются сравнением за один раз двух входных элементов. В самом деле, алгоритм, который работает на произвольном линейно упорядоченном множестве, не может никак преобразовать входные данные, поскольку при самой общей постановке задачи операции над данными "не имеют смысла". Так или иначе, мы докажем сильный результат о высоте любого дерева решений, упорядочивающего последовательность из п элементов.
Лемма 3.1. Двоичное дерево высоты Н содержит не более 1п листьев.