Отчет по практике: Рентгеновский спиральный компьютерный томограф Siemens Somatom Emotion
Компьютер осуществляет реконструкцию изображения, решая более 30 000 уравнений одновременно. В современных томографах программное обеспечение для обработки изображений во многом определяет их клиническую производительность и информативность регистрируемых данных и составляет 1/3 общей стоимости сканера. Компьютер получает сигнал в аналоговой форме и преобразовывает его в двоичный код, используя аналогово-цифровой преобразователь. Цифровой сигнал хранится в течении сканирования, что позволяет после его окончания реконструировать изображение в заданной плоскости.
2.2 Режимы сканирования
Существует два способа сбора данных в компьютерной томографии: пошаговое и спиральное сканирование.
Самым простым способом сбора данных является пошаговая КТ, для которого можно выделить две основные стадии: накопление данных и позиционирование пациента (рис. 5). На стадии накопления данных (1 с или менее) пациент остается неподвижным и рентгеновская трубка вращается относительно пациента для накопления полного набора проекций в предварительно определенном месте сканирования. На стадии позиционирования пациента (более 1 с) данные не накапливаются, а пациент перемещается в следующее положение сбора данных. Изображение реконструируют по полному набору данных.
Рисунок 5 – Схема обследования при пошаговом сканировании: 1 – сбор данных; 2 – движение стола; 3 – команда задержки дыхания; 4 – сбор данных; 5 – команда нормального дыхания; 6 – движение стола; 7 – реконструкция изображения
Движение пациента во время сбора данных при различных положениях трубки вызывает артефакты изображений и ограничивает области диагностического применения.
Более сложным является винтовое (спиральное) сканирование, которое стало возможным благодаря появлению конструкции гентри с кольцом скольжения, позволяющим трубке и детекторам вращаться непрерывно.
Достоинство спиральной КТ заключается в непрерывном накоплении данных, осуществляемом одновременно с движением пациента через раму (рис. 6). Расстояние перемещения пациента за оборот рамы соответствует скорости движения стола. Поскольку данные накапливаются непрерывно, рабочий цикл в спиральной КТ близок к 100%, а отображение изображаемого объема происходит быстрее. Обычно при реконструкции изображений в спиральной КТ используются алгоритмы интерполяции, которые позволяют выделить из общего набора данные, необходимые для построения изображения отдельного среза при каждом положении стола.
Рисунок 6 – Схема спирального сканирования
2.3 Получение компьютерной томограммы
Получение компьютерной томограммы (среза) на выбранном уровне основывается на выполнении следующих операций: 1) формирование требуемой ширины рентгеновского луча (коллимирование); 2) сканирование пучком рентгеновского излучения, осуществляемого движением (вращательным и поступательным) вокруг неподвижного объекта устройства «излучатель – детекторы»; 3) измерение излучения и определение его ослабления с последующим преобразованием результатов в цифровую форму; 4) машинный (компьютерный) синтез томограммы по совокупности данных измерения, относящихся к выбранному слою; 5) построение изображения исследуемого слоя на экране видеомонитора (дисплея). Пример рентгеновской компьютерной томограммы на рис. 9.
Рисунок 7 – Компьютерная томография верхнечелюстных пазух. Сверхкомплектный зуб в левой гайморовой пазухе.
Строго коллимированный пучок рентгеновского излучения проходит только через ту плоскость, которая интересует врача (рис. 10). При этом регистрация рассеянного излучения сведена к минимуму, что значительно улучшает визуализацию тканей, особенно мало контрастных. Снижение регистрации рассеянного излучения при компьютерной томографии осуществляется коллиматорами, один из которых расположен на выходе рентгеновского пучка из трубки, другой – перед сборкой детекторов.
Рисунок 8 – Схема рентгеновской компьютерной томографии.
1 – излучатель; 2 – круговой ячеистый детектор; 3 – компьютер; 4 – система получения изображения.
Известно, что при одинаковой энергии рентгеновского излучения материал с большей относительной молекулярной массой будет поглощать рентгеновское излучение в большей степени, чем вещество с меньшей относительной молекулярной массой. Подобное ослабление рентгеновского пучка может быть легко зафиксировано. Однако на практике мы имеем дело с совершенно неоднородным объектом – телом человека. Поэтому часто случается, что детекторы фиксируют несколько рентгеновских пучков одинаковой интенсивности в то время, как они прошли через совершенно различные среды. Это наблюдается, например, при прохождении через однородный объект достаточной протяженности и неоднородный объект с такой же суммарной плотностью. При вращении рентгеновской трубки вокруг тела пациента детекторы регистрируют 1,5–6 млн. сигналов из различных точек (проекций) и, что особенно важно, каждая точка многократно проецируется на различные окружающие точки. При регистрации ослабленного рентгеновского излучения на каждом детекторе возбуждается ток, соответствующий величине излучения, попадающего на детектор. В системе сбора данных ток от каждого детектора преобразуется в цифровой сигнал и после усиления подается в ЭВМ для обработки и хранения. Только после этого начинается собственно процесс восстановления изображения.
Восстановление изображения среза по сумме собранных проекций является чрезвычайно сложным процессом, и конечный результат представляет собой некую матрицу с относительными числами, соответствующую уровню поглощения каждой точки в отдельности.
В компьютерных томографах применяются матрицы первичного изображения 256х256, 320х320, 512х512 и 1024х1024 элементов. Качество изображения растет при увеличении числа детекторов, увеличении количества регистрируемых проекций за один оборот трубки и при увеличении первичной матрицы. Увеличение количества регистрируемых проекций ведет к повышению лучевой нагрузки, применение большей первичной матрицы – к увеличению времени обработки среза или необходимости устанавливать дополнительные специальные процессоры видеоизображения. За одно сканирование получают два соприкасающихся между собой среза толщиной 10 мм каждый. Картина среза восстанавливается на матрице размером 160х160. Полученные коэффициенты поглощения выражают в относительных единицах шкалы, нижняя граница которой (-1000 ед. Н.) (ед. Н. – единицы Хаунсфильда или числа компьютерной томографии) соответствует ослаблению рентгеновских лучей в воздухе, верхняя (+1000 ед. Н.) – ослаблению в костях, а за ноль принимается коэффициент поглощения воды. Различные ткани мозга и жидкие среды имеют разные по величине коэффициенты поглощения. Например, коэффициент поглощения жира находится в пределах от -100 до 0 ед. Н., спинно-мозговой жидкости – от 2 до 16 ед. Н., крови – от 28 до 62 ед. Н. Это обеспечивает возможность получать на компьютерных томограммах основные структуры органов и многие патологические процессы в них. Чувствительность системы в улавливании перепада рентгеновской плотности в обычном режиме исследования не превышает 5 ед. Н., что составляет 0,5%. На экране дисплея высоким значениям плотности (например, кости) соответствует светлые участки, низким – темные. Градационная способность экрана составляет 15–16 полутоновых ступеней, различаемые человеческим глазом. На каждую ступень, таким образом, приходится около 130 ед. Н.
Известно, что качество визуализации анатомических образований и очагов поражения зависит в основном от двух факторов: размера матрицы, на которой строится томограмма, и перепада показателей поглощения. Величина матрицы может оказывать существенное влияние на точность диагностики. Так, количество ошибочных диагнозов при анализе томограмм на матрице 80х80 клеток составляло 27%, а при работе на матрице 160х160 – уменьшилось до 11%.
Компьютерный томограф обладает двумя видами разрешающей способности: пространственной и по перепаду плотности. Первый тип определяется размером клетки матрицы (обычно – 1,5х1,5 мм), второй равен 5 ед. Н. (0,5%). Обычная рентгенография позволяет уловить минимальную разницу по плотности между соседними участками в 10–20%. Однако при очень значительном перепаде плотностей рядом расположенных структур возникают специфические для данного метода условия, снижающие его разрешающую способность, так как при построении изображения в этих случаях происходит математическое усреднение и при этом очаги небольших размеров могут быть не обнаружены. Чаще это происходит при небольших зонах пониженной плотности, расположенных вблизи массивных костных структур (пирамиды височных костей) или костей свода черепа. Важным условием для обеспечения проведения компьютерной томографии является неподвижное положение пациента, ибо движение во время исследования приводят к возникновению артефактов – наводок: полос темного цвета от образований с низким коэффициентом поглощения (воздух) и белых полос от структур с высоким КП (кость, металлические хирургические клипсы), что также снижает диагностические возможности.
3. Спиральная компьютерная томография
Спиральная КТ используется в клинической практике с 1988 года, когда компания SiemensMedicalSystems представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника – рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гантри. В этом случае траектория движения рентгеновской трубки, относительно оси z– направления движения стола с телом пациента, примет форму спирали.
В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что скорость движения стола может быть в 1,5–2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.
Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.
Компьютерная томография широко используется в медицине для нескольких целей: