Отчет по практике: Телеметрические системы в процессе бурения

Датчик осевой нагрузки 30, датчик крутящего момента 31, датчик оборотов гидротурбины 32, блок инклинометрии 34 и передающий модуль 33 установлены в корпусе забойной телеметрической системы 3. Возможна установка над источником питания 4 съемного модуля пульсатора 43 для передачи информации по гидравлическому каналу связи.

К выходам компьютера 17 подключены монитор 35, принтер 36, а через блок сопряжения 37 - пульт бурильщика 38, модем 39. Модем 39 соединен по линии телефонной связи через модем удаленного компьютера 40 с удаленным компьютером 41. Выход компьютера 17 подключен к блоку управления 42. к которому, в свою очередь, могут быть подключены привод насоса 6, привод лебедки 20, привод ротора 25. привод превентора 28 и управляемый клапан 14.

Компьютер 17 содержит программное обеспечение информационно-технологического геонавигационного комплекса 45, которое включает: операционную систему 46, программу обработки информации от технологических датчиков 47, базу знаний по всем вопросам, связанным с бурением скважин, проектные данные конкретной скважины (индивидуальные или групповой проект), экспертную систему, программу выработки технических решений 48, а также программу управления 49.

Преобразовательный комплекс 18 содержит по числу датчиков аналого-цифровые преобразователи АЦП 50..ЛЦП 58, контроллер 59, модем комплекса 60 и блок питания 61.

Комплекс работает следующим образом. При бурении работает насос 5, который по нагнетательной линии 7 подает буровой раствор к трубопроводу 3 и приводит его в действие. Инклинометрические параметры с блока инклинометрии 34 и забойные параметры с датчиков осевой нагрузки 30 и крутящего момента 31, и оборотов гидротурбины 32 при помощи передающего модуля 33 в виде электромагнитного сигнала подаются на антенну 15 и далее в приемное устройство 16 и в компьютер 17. Сигналы с наземных технологических датчиков 8, 10, 11. 12. 13. 19 и 29 подаются на вход в преобразовательный комплекс 18 и далее на вход в компьютер 17, где обрабатывается и передается одновременно на монитор 35 и пульт бурильщика 38 и при необходимости на принтер 36. На экране монитора 35 информация оперативно, качественно и наглядно доводится до исполнителя-геофизика (технолога), а на пульте бурильщика 38 часть этой информации представляется в цифровой и аналоговой форме, причем в аналоговой форме при помощи светодиодов, размещенных по окружности, представляются преимущественно инклинометрические данные.

Рисунок №3.Приемное устройство, пульсатор гидравлического канала связи, корпусные детали телеметрической системы электронная аппаратура, входящая в состав скважинного прибора ЗТС

Программа обработки информации от технологических датчиков 4 обрабатывает всю информацию, полученную с датчиков для представления первоначально в цифровом виде, затем для визуализации в форме таблиц, графиков и диаграмм на экране монитора 35 и, кроме того, рассчитывает и выдает данные, полученные путем математических преобразований с замеренными параметрами, например, отклонение от траектории. Экспертная программа и программа выработки технических решений 48 осуществляет более сложные логические и математические преобразования информации для выработки рекомендаций по управлению процессом бурения. Программа управления 49 непосредственно подает управляющие сигналы на исполнительные органы системы управления, к которым относятся привод насоса 6, привод лебедки 18, привод ротора 25 и привод превентора 28. Возможна выдача звуковых и световых предупреждающих сигналов при аварийной ситуации. Предложенный комплекс обеспечивает и полную автоматизацию процесса бурения путем воздействия на привод насоса 6, привод лебедки 18, привод ротора 25 и привод превентора 28. При этом каждое из этих управляющих воздействий может быть реализовано либо в отдельности, либо совместно в любом сочетании. Обратная связь между компьютером 17 и забойной телеметрической системой 3 осуществляется путем воздействия на управляющий клапан 14 и посылки управляющего импульса по гидравлическому каналу. Такая связь может быть использована, например, для включения или выключения источника питания 4, изменения режима работы забойного измерительного комплекса, изменения частоты и формата передачи.

Если установлен пульсатор 43, создающий гидравлические импульсы бурового раствора, то информация об инклинометрических параметрах и с забойных технологических датчиков может быть передана по гидравлическому каналу связи на датчик давления 10 и далее, к преобразовательному комплексу 18 и в компьютер 17. По информации с датчиков расхода 11, плотности 12 и датчика наличия газовой фазы 13, поступающей также через преобразовательный комплекс 18, подается в компьютер 17.

Производится коррекция данных, полученных с забоя по гидравлическому каналу связи на датчик давления 10. Это необходимо, чтобы учесть влияние характеристик бурового раствора на скорость распространения гидравлической волны в буровом растворе для избежания искажения результата. Кроме того, комплекс обеспечивает передачу всей информации на удаленный компьютер 41, для осуществления контроля за бурением не только на одной буровой, но и в масштабах куста или месторождения.


Схема 1: Информационно-технологический геонавигационный комплекс

Телеметрическая система, входящая в состав информационно-технологического геонавигационного комплекса, предназначена для определения пространственной ориентации компоновки низа бурильной колонны, а также забойных параметров, необходимых для оптимизации процесса бурения. Телеметрическая система работает следующим образом. Поток промывочной жидкости приводит в действие турбину электрогенератора, вырабатывается электроэнергия, питающая электронный блок скважинного прибора. Информация от датчиков преобразуется в кодовую последовательность, которая передается в зависимости от условий бурения и наличия соответствующих модулей по электромагнитному или гидравлическому каналам связи. На поверхности сигнал принимается антенной, удаленной на ЗО...5О метров от буровой или датчиком-преобразователем, установленным в нагнетательную линию насосов. В приемном устройстве принятый сигнал декодируется и вводится в компьютер для обработки. Приемное устройство питается от сети переменного тока частотой 50-1 Гц, напряжением 180-240 В. Потребляемая мощность не более 20Вт. Чувствительность не менее ЮмкВ. Приемное устройство соединяется с компьютером по интерфейсу RS232. Программное обеспечение телеметрической системы, установленное на компьютере, обеспечивает обмен информацией между ПЭВМ и УСО обработку информации.

Скважинная часть телеметрической системы имеет модульную конструкцию и производится с наружным диаметром 108, 172, 195 мм. Корпусные детали телеметрической системы выполнены из немагнитной специальной стали с высокими механическими свойствами.

Рисунок №4.

Скважинная часть забойной системы состоит из немагнитного корпуса-переводника, имеющего на обоих концах стандартные резьбы бурового инструмента. Как правило, это 6-10 метровая труба из сплава Д16Т (ЛБТ), либо из титана марки ВТ-4 или сплава 12Х18Т, в которой размещены генератор переменного тока на постоянных магнитах, приводимый во вращение гидротурбиной, и аппаратурный контейнер, внутри которого размещены инклинометрические датчики, блок управления процессом записи, устройство управления коммутацией канала связи. Там же размещены коммутатор канала связи, устройство управления работой системы и источник питания. Для электрического разобщения глубинного прибора и колонны труб, необходимого для ввода сигналов передачи в канал связи, предусмотрена изолирующая вставка из стеклопластика, пропитанного эпоксидной смолой.

Функциональные возможности телеметрической системы зависят от состава входящих в нее модулей, которые, в свою очередь, определяются технологической необходимостью. Базовые комплектации скважинного прибора обеспечивают ориентацию отклонителя на забое, а также непрерывную передачу и индикацию на поверхности азимута, зенитного угла скважины в процессе турбинного бурения в геологических средах, не имеющих магнитных аномалий. Телеметрические системы используют для передачи электромагнитный или гидравлический канал связи. Передача информации по гидравлическому каналу связи обеспечивает работоспособность системы в породах с высокой проводимостью, но имеет меньшую скорость передачи информации. Измерение угловых параметров также возможно без циркуляции бурового раствора в «статике», при этом используется батарейное питание электронных компонентов ЗТС. Технические характеристики забойной телеметрической системы приведены в таблице №1:

Технические характеристики

Наименование параметра Рабочий диапазон
зенитный угол, град О...130±0,1
азимут, град О...360±1,0
отклонитель. Град 0...360+1,0
кажущееся сопротивление горных пород (КС), ом м 0...200
частота вращения забойного двигателя, об/мин 0...500
частота вращения генератора питания ЗТС, об/мин 0...3000
температура на забое. С 0...125
максимальная рабочая температура, С 125
максимальное гидростатическое давление, МПа 50
Расход промывочной жидкости, л/сек 12...75
максимальные растягивающие и сжимающие нагрузки, кН 500...1000
максимальный вращающий момент, кН/м 20 ...50
минимальный радиус кривизны скважины, м 50...80
Макс., достигнутая глубина работы комплекса по вертикали, м 3400
содержание песка в растворе. % <3
наработка на отказ, не менее, час 200
диаметр скважинного прибора телесистемы, мм 108/172/195
длина телесистемы в сборе без диамагнитного удлинителя, м 3,0...4,5
длина диамагнитного удлинителя, м 2
масса телесистемы в сборе без диамагнитных удлинителей, кг 120...260
присоединительные резьбы Замковые

Рисунок №5. Генераторы питания скважинной аппаратуры

Генератор питания входит в состав забойной телеметрической системы и предназначен для питания скважинной аппаратуры электроэнергией.

Электрогенераторы SG069, SG072, SG076, маслонаполненные с температурными компенсаторами, предназначены для питания электроники скважинного прибора телеметрической системы. Их технические характеристики приведены на графиках №1 и в таблице №2.

График №1

Таблица №2: Технические характеристики генераторов

Генератор SG 069 SG 072 SG 076
Диаметр ЗТС 108/172 172/195 172/195
Наружный диаметр турбины, мм 89/142 142 142
Диаметр корпуса генератора, мм 80 112 98
Длина, мм 577 570 548
Масса, кг 9,2 16,2 10,3

Заключение

Во время прохождения практики были изучены геолого-технические условия бурения нефтегазовых скважин Западной Сибири, условия и принцип работы телеметрических систем.

При написании данной работы я пришел к выводу, что за телеметрическими системами будущее, и их необходимо в дальнейшем разрабатывать и совершенствовать и не только в плане инклинометрии, но и в создании полного комплекса автоматического управления бурением скважины.

Основными направлениями совершенствования являются: увеличение количества измеряемых и передаваемых на поверхность параметров бурения, скорости передачи информации; создание в забойных устройствах автоматов, самостоятельно управляющих процессом проводки скважин (управляемый отклонитель, прибор корректирования нагрузки на долото и др. механизмы); использование двухсторонней связи забой — устье. Существенное повышение точности и качества проводки высокотехнологичных скважин невозможно без совершенствования наземного бурового комплекса, способного автономно

или при минимальном вмешательстве оператора осуществлять бурение в продуктивном пласте с учетом особенностей его фактического строения. Создание интеллектуально-автоматизированной буровой установки, которая будет контролировать и корректировать работу бурильщика, а в некоторых случаях —осуществлять бурение скважины или выполнение определенных операций в автоматическом режиме, является одним из приоритетных направлений зарубежных и отечественных производителей бурового оборудования.

Материалы, использованные при написании этого отчета в последующем предполагается положить в основу Дипломной работы с примерной темой: «Системы автоматизированного управления проводкой наклонно-направленных и горизонтальных скважин».


Литература

К-во Просмотров: 396
Бесплатно скачать Отчет по практике: Телеметрические системы в процессе бурения