Реферат: ADSL Essay Research Paper Overview
By 1994, ADSL development provided for 7 Mbps of downstream bandwidth
and up to 576 kbps of return bandwidth. This enabled the telcos to use
the copper wire paths to offer basic telephone service, ISDN, full-motion
video, and videoconferencing. AT&T
began its own development process using a carrierless amplitude and
phase (CAP) modulation alternative to the discrete multitone (DMT) developed
by Amati for ADSL. Although DMT appeared to be the best of the two alternatives,
CAP was available more quickly. Eventually, it was clear that either alternative
could be used by an operating company, they just couldn’t’t be mixed
in the same system.
The first trials of ADSL were relatively simple. There was a box at each
end of a conventional telephone line, that is, one in the customer’s
home/business and one in the phone company’s switching office. The
box divided the phone line into multiple paths, one to carry compressed
video signals to the customer, a second to carry questions and commands
back to the signal provider, and a third for normal telephone service.
Additional paths could be added to support services such as videoconferencing.
The major drawback was the cost of the boxes, up to $1000 each.
As interest in ADSL continued to alternate back and forth in the United
States, companies in other parts of the world quickly snapped it up. Developing
countries attempting to compete in the new world couldn’t afford
high-tech fiber pathways. Established cities, such as Rome and London,
faced almost insurmountable problems if they wanted to dig up the streets
and replace copper with fiber. ADSL quickly gained supporters around the
world.
By early 1995, ADSL could provide high-speed data over a single twisted
copper pair at the rate of 1.544 to 6.144 Mbps downstream (central office
to customer) and 16 to 640 kbps upstream (customer to central office)
for up to 18,000 feet. By shortening the distance to 9000 feet, ADSL could