Реферат: Адсорбция полимеров на границе раздела твердое тело - водный раствор
Одновременно, что на поверхности происходит частично и сам процесс формирования надмолекулярных структур.
Можно допустить, что по тем же причинам агрегаты молекул или другие надмолекулярные структуры будут менее плотноупакованными. Чем больше поверхность наполнителя, тем больше ограничивается подвижность цепей уже в ходе формирования поверхностного слоя, и тем рыхлее упаковка в нем макромолекул. Посте завершения процесса формировании материала, когда агрегаты и молекулы более рыхлоупакованные, связаны с поверхностью, основное влияние на свойства имеет уже ограничение подвижности молекул. входящих в поверхностный слой.
Температуры стеклования граничных слоев
Как известно, переход из высокоэластического в стеклообразное состояние является кооперативным процессом, и поэтому величина скачка теплоемкости при стекловании зависит, очевидно, от числа молекул или сегментов, принимающих участие в переходе. Так как стеклование связано с проявлением подвижности макромолекул, то понижение скачка теплоемкости при стекловании может быть однозначно связано с исключением некоторой части макромолекул из участия в процессе. Экспериментальные данные подтверждают это положение: во всех случаях с ростом содержания твердой фазы скачок теплоемкости уменьшается. Это дает возможность подойти к оценке доли полимера, находящегося в граничных слоях. Если предположить, что макромолекулы, находящиеся в граничных слоях вблизи поверхности, не участвуют в общем процессе, то доля «исключенных» макромолекул составляет
= (1-f) = 1 - C/Ca,
где Ca, C - значение скачка теплоемкости для ненаполненного и наполненного образцов соответственно. Отсюда можно определить толщину граничного слоя следующим образом. Если упрощенно представить частицы наполнителя в виде сфер радиуса r, a толщину адсорбционного слоя обозначить через r, то объем адсорбционного слоя вокруг частички наполнителя будет описываться уравнением:
V = 4[(2+r)3 - r3]/3
С другой стороны, объемную дано граничных макромолекул можно представить как (1-f)c, где f - доля несвязанных макромолекул; с - общая объемная доля полимера в системе. Приравнивая отношение объема адсорбированного слоя вокруг частицы к ее объему и отношение общей объемной доли граничных макромолекул к объемной доле наполнителя в системе, можно написать:
Если взять экспериментальное значение для системы олигоэтиленгликольадипинат - азросил (1-f) 1 и с = 0,975, то r/r 0,8. Так как частицы аэросила имеют диаметр около 250 А, то дм данной системы толщина слоя равна 100 А. Аналогичные величины порядка 170 А получены для наполненных сажей линейных полиуретанов.
Итак, абсолютное значение теплоемкости полимерной фазы в наполненных системах ниже, чем в ненаполненных, что интерпретируется как следствие понижения химического потенциала макромолекул в граничных областях по сравнению с химическим потенциалом в объеме. Таким образом, термодинамические данные указывают на определенные структурные изменения в граничных слоях полимеров на твердой поверхности.
Как уже было сказано - толщина граничного стоя зависят от свойств твердой поверхности и характеристик полимерной фазы. Влияние химической природы полимера на изменение свойств граничных слоев очень существенно. Рассмотрим некоторые литературные данные, полученные при измерении теплоемкости (табл. 2). Как видно из табл. 2 при увеличении в полимерах содержания аэросила во всех случаях происходит более или менее резкое понижение величины скачка теплоемкости Ср при температуре стеклования. Это указывает на переход некоторой части макромолекул из объема в граничные слои вблизи твердой поверхности. В табл. 2 приведены значения доли полимера в граничном слое, найденной из зависимости, учитывающей величину скачка теплоемкости при стекловании для наполненного и ненаполненного образцов. Значение увеличивается с повышением содержания наполнителя в системе (хотя пропорциональности при этом не наблюдается), и величина стремится к некоторому пределу.
Таблица 2.
Параметры стеклования в наполненных полимерах
Содержание аэросила, вес.% |
Тс, 0С |
Ср, кал/моль |
|
Ес, кал/моль |
с, см3/моль |
h, кал/моль |
Vh, см3/моль |
Полистирол | |||||||
0 | 95 | 6,25 | - | 7320 | 100,5 | 1230 | 16,9 |
1 | 95 | 5,60 | 0,105 | - | - | 1375 | 18,9 |
5 | 95 | 4,55 | 0,270 | - | - | 1705 | 23,5 |
10 | 95 | 3,10 | 0,505 | - | - | 160 | 29,7 |
15 | 95 | 3,00 | 0,520 | - | - | 2190 | 30,1 |
Полиметилметакрилат | |||||||
К-во Просмотров: 572
Бесплатно скачать Реферат: Адсорбция полимеров на границе раздела твердое тело - водный раствор
|