Реферат: Аэродинамическое сопротивление автомобиля

Вообще, оценивая различные тела, которые перемещаются в воздушном пространстве, можно понять, что «грамотная» форма объекта – это необходимое условие, чтобы перемещение было менее трудным.

На рисунке сравниваются тела с одинаковым отношением длины к высоте l//h или длины к диаметру l//d (это отношение иногда называют коэффициентом полноты тела); фактор близости основания (т.е. поверхности дороги) при таком рассмотрении может не учитываться.

Аэродинамическое сопротивление тела вращения (C x ~0,05) состоит преимущественно из сопротивления трения; предельный случай чистого сопротивления трения имеет место при продольном обтекании плоской пластины. Для этого вида сопротивления имеется хорошая теоретическая база. Влияние вязкости воздуха заметно только в очень тонкой, прилежащей к стенкам зоне, называемой пограничным слоем. Основываясь на экспериментально определенных законах распределения касательных напряжений вдоль стенок, можно рассчитать характеристики этого пограничного слоя, например его толщину, касательное напряжение вдоль стенки, место отрыва, для этого лишь необходимо, чтобы был предварительно рассчитан внешний поток, который в данном случае рассматривается как идеальный, т.е. не обладающий вязкостью. Таким образом, можно провести оптимизацию, например, тела вращения, т.е. для тела с предварительно заданным отношением l//h и предварительно заданным объемом можно рассчитать форму, обеспечивающую минимальное аэродинамическое сопротивление. В дальнейшем можно, используя теоретические преобразования, пересчитать полученные для этого тела результаты применительно к телу, напоминающему автомобиль. Однако с уменьшением коэффициента полноты l//d сопоставимость теоретических расчетов с экспериментальными данными ухудшается. Причина этого заключается в отличие давлений, рассчитанных теоретически и имеющих место в реальных условиях, в области отрываемого потока (базовое давление, в отечественной литературе этот параметр часто называют донным давлением).

Аэродинамическое сопротивление прямоугольного параллелепипеда, обтекаемого продольным потоком (C x ~0,9) является в основном сопротивлением давления, в чистой форме этот вид сопротивления имеет место при обтекании плоской пластины, расположенной поперечно к потоку. Но даже в этом простом случае - простом в смысле того, что место отрыва однозначно определено острыми кромками - сопротивление давления в интересующем нас случае турбулентного потока в вихревом следе за пластиной не подается расчету. Обратное действие области возмущенного потока, в которой существенно влияние трения, на идеальный, не обладающий вязкостью внешний поток гораздо сильнее, чем в случае пограничного слоя. Общепризнанной модели для вихревого следа за телом, несмотря на интенсивные работы по ее созданию, до сих пор нет. Итеративное рассмотрение идеального, не обладающего вязкостью, а затем реального, обладающего вязкостью, потока - как в случае пограничного слоя - невозможно. Решение полных уравнений движения, так называемых уравнений Навье-Стокса, возможно только для ламинарного потока, когда закон изменения касательных напряжений известен; в случае турбулентного потока из-за отсутствия подходящего закона изменения касательных напряжений, не говоря уже о проблемах вычисления, такого решения нет.

Легковой автомобиль, несмотря на меньшее по сравнению с параллелепипедом аэродинамическое сопротивление, по механике потока ближе к параллелепипеду и сильно удален от тела вращения. Как будет показано в двух последующих разделах, обтекание автомобиля сопровождается отрывами, а его аэродинамическое сопротивление является пре-имущественно сопротивлением давления.

Так как аэродинамическое сопротивление не поддается расчету, то были предприняты попытки каталогизировать его в зависимости от основных параметров формы. Можно сказать, что эти усилия до сегодняшнего дня безуспешны. Число параметров, описывающих геометрию легкового автомобиля, слишком велико, и отдельные поля потоков находятся в весьма сложном взаимодействии друг с другом.

Таким образом, в данной работе физическая суть процесса обтекания рассматривается только с качественной стороны; кроме того, приведен ряд выводов, которые относятся к конкретным случаям, и обобщать их необходимо с большой осторожностью. С учетом этих аспектов предлагается метод проведения работ, который является ничем иным, как стратегией опробирования.

Как правило, набегающий на автомобиль поток несимметричен. Для упрощения речь идет лишь о симметричном обтекании; влияние бокового ветра на аэродинамическое сопротивление не рассматривается.

В целом поле потока вокруг автомобиля изучено недостаточно. Поэтому картину обтекания автомобиля можно представить только благодаря суммированию отдельных сведений по этому вопросу. Они получены в результате измерений скоростей потока, распределения давления и наблюдения обтекания как на поверхности автомобиля, так и в прилегающем к нему пространстве.

Спойлер передка может выполняться отдельно устанавливаемой деталью кузова либо изготовляться как единое целое с панелью передка, т.е. отштамповываться совместно с ней. В первом случае существует относительно большая свобода в выборе положения, высоты и наклона спойлера. Во втором случае возможности при выборе параметров спойлера меньше, связано это прежде всего с технологическими причинами.

Стойка ветрового стекла (стойка А). Влияние стойки ветрового стекла на аэродинамическое сопротивление очень сильно зависит от положения и формы ветрового стекла, а также от формы передка. Решая вопрос снижения аэродинамического сопротивления путем правильного формообразования стойки ветрового стекла, как, впрочем, и любого другого элемента кузова, необходимо учитывать технологические возможности изготовления и ее функциональную нагрузку, которая заключается, например, в защите передних боковых стекол от попадания дождевой воды и грязи, сдуваемой с ветрового стекла, в поддержании приемлемого уровня внешнего аэродинамического шума и др.

Схема обтекания передка легкового автомобиля и его элементов

Полученное таким образом поле потока для легкового автомобиля представлено на рис. Поле потока характеризуется многочисленными отрывами. Места, в которых может иметь место отрыв потока, показаны отдельно. Можно выделить два типа отрывов, а именно двумерные и трёхмерные. Линия отрыва в двумерном случае проходит преимущественно перпендикулярно к местному направлению потока. Если имеет место повторное прилегание потока, то образуются так называемые обратные потоки (циркулирующие потоки). Такие вихри могут возникать в следующих местах: на передней кромке капота; сбоку на крыльях; в зоне, образованной пересечением капота и ветрового стекла; на переднем спойлере и, возможно, в зоне излома при ступенчатой форме задней части автомобиля. Зоны, в которых оторвавшийся поток представляет собой близкое к двухмерному вихревое движение (зоны "спокойной воды") чаще всего образуются с обратной стороны задка автомобиля.

Схематичное изображение формы потока при различных исполнениях задней части автомобиля

В зависимости от структуры поля потока за автомобилем образуется длинный, сильно вытянутый назад открытый или короткий замкнутый вихревой след (см. рис.).

Оторвавшиеся потоки совершают циркулирующие движения, оси которых, как правило, проходят перпендикулярно к набегающему невозмущенному потоку и параллельно к линии отрыва. На рис. для каждой из трех форм задней части автомобиля показана пара вихрей, вращающихся навстречу друг другу. Нижний вихрь вращается в направлении против часовой стрелки; именно он переносит частицы грязи на обратную сторону автомобиля. Верхний вихрь вращается в противоположную сторону, т.е. по часовой стрелке.

Конструкторы наблюдали, что после отрыва потока в вихревом следе образуется пара противоположно вращающихся продольных вихрей, которая в случае формы задка "универсал" индуцирует восходящий поток, а при плавно спускающейся и ступенчатой формах задка - нисходящий поток в вихревом следе. При форме задка "универсал" пара вихрей поднимется в направлении потока и перемещается к плоскости симметрии. При плавно спускающейся и ступенчатой формах задка вихри вдоль потока опускаются к дороге и перемещаются наружу. Можно предположить, что эти продольные вихри являются продолжением описанных выше поперечных вихрей.

Второй тип отрыва имеет трехмерный характер; эти отрывы на рис. отмечены штрихпунктирными линиями или заштрихованными зонами. Вихревые трубки образуются на наклонно обтекаемых острых кромках, совершенно так же, как на треугольном крыле самолета. Такая пара вихрей образуется на правой и левой стойках ветрового стекла, так называемых стойках А. В районе верхнего конца стоек указанная пара вихрей изгибается по направлению к крыше; их дальнейшее взаимодействие с потоком в районе задней части автомобиля еще не изучено. Ярко выраженная пара вихревых трубок образуется позади автомобиля при определенном наклоне линии задка (см. рис.). Эти вихри взаимодействуют с внешним потоком и с двухмерным вихревым следом. Они в значительной степени аналогичны кромочным вихрям крыла конечного размаха. Указанные вихревые трубки в пространстве между их осями индуцируют поле нисходящего потока, которое определяет расположение линии отрыва потока, обтекающего тело. Этот механизм становится понятным, если рассмотреть рис. На правой фотографии существует пара сильных вихрей; на левой фотографии образование такой пары искусственным путем предотвращено. В первом случае индуцированный парой вихревых трубок нисходящий поток способствует тому, что линия отрыва расположена очень низко, и это приводит к образованию небольшого замкнутого вихревого следа. Во втором случае поток отрывается от задней кромки крыши, вихревой след так сильно вытянут, что оканчивается вне пространства, имеющегося для наблюдений (длина рабочей части аэродинамической трубы). Следует указать на то, что конструкторы на своей модели автомобиля с плавно спускающейся формой задка не наблюдали описанные выше продольные вихревые трубки; другие измерения явно показали существование этой пары вихрей. Указанное несоответствие лишний раз подтверждает, что этот процесс формирования потока за автомобилем изучен еще не в полной мере.

Вращающиеся навстречу друг другу поперечные вихри в вихревом следе за автомобилями с разной формой задка: а) ступенчатая форма задка; б) плавно спускающаяся форма задка; в) круто спускающаяся форма задка

Для чего нужен козырёк?

Для анализа "десятку" загнали в аэродинамическую трубу. Вопреки ожиданиям, подъемная сила осталась прежней.

А при установке козырька над капотом автомобиля возникает сильное завихрение

Поток воздуха плавно обтекает передок стандартной "десятки"

Да и коэффициент аэродинамического сопротивления изменился незначительно — следовательно, существенного увеличения расхода топлива не будет. Правда, немного изменился опрокидывающий момент — при установке козырька на "десятку" подъемная сила, действующая на колеса передней оси, увеличивается на 50 Н, а задние колеса немного догружаются. Если для визуализации воздушных потоков пустить над капотом "десятки" струю дыма, то видно, что сразу за козырьком воздух закручивается в вихре, и это создает над капотом значительное разрежение. Из-за этого поток воздуха на передней части капота даже меняет направление на противоположное! Естественно, ни один изготовитель подобных "элеронов" об этом и не подозревает — никто из них наверняка не проводил аэродинамических исследований...

Но, может быть, козырек хотя бы снижает загрязняемость лобового стекла? Ничуть не бывало — наш "элерон", установленный на одну из редакционных "десяток", при езде по осенним грязным дорогам не дал ни малейшего положительного эффекта. Единственное отличие — если раньше летящая из-под колес впереди идущих машин грязь растекалась по капоту ровными симметричными струями, то теперь передок автомобиля стал напоминать орошенную из пульверизатора поверхность. А вышеупомянутое завихрение воздуха приводит к тому, что щель между козырьком и капотом начинает медленно, но верно забиваться песком. Так что польза от козырька только одна — он действительно защищает торец капота от мелких камней.

Изменение аэродинамических характеристик автомобиля ВАЗ-2110
Без козырька С козырьком
Площадь миделя, м2 1,931 1,931
Коэффициент аэродинамического сопротивления Сх 0,347 0,355
Сила лобового сопротивления Рх, Н 535 548
Без козырька С козырьком
Подъемная сила Рz, Н 324 328
колес передней оси 79 134
колес задней оси 245 194
Опрокидывающий момент Му, Нм –206 –75

Интересные сводки и аспекты аэродинамики

Аэродинамический анализ некоторых автомобилей, а именно автомобилей с большим именем показал, что не всё «крутое» превосходно.

Все знают марку спортивного суперкара Lamborghini , да это действительно машина превосходна во всех её отношениях, но для оценки аэродинамического сопротивления она показала неожидаемые показатели. Скорость здесь была достигнута за счёт мощного 12-ти цилиндрового двигателя, низкой подвески, широкой базы (устойчивость), низкого кузова, а также пластикового корпуса, антикрыльев. Спойлеры и антикрылья на этом автомобиле расположены больше для стиля и для внешнего эстетического восприятия. Иногда, в некоторых случаях, грамотное расположение внешних спойлеров ухудшает стиль. Конструкторы и дизайнеры пытались на этом авто «убрать» поток фронтального набегающего воздуха, свести его на нет. Современное мнение – это плавное распределение потока вдоль формы кузова.

Lamborghini Countach 5000 QW

Cx для некоторых автомобилей

Модель Cx Цена $

Lamborghini countauch -----------------------------0,42

К-во Просмотров: 708
Бесплатно скачать Реферат: Аэродинамическое сопротивление автомобиля