Реферат: Акустические резонаторы
Одиночные резонансные поглотители иногда используют для исправления АЧХ помещения в области нижних частот. Комбинации резонаторов в виде перфорированных листов (панелей), укрепленных на некотором расстоянии от стены или потолка помещения, на частоте резонанса поглощают 0,8 - 0,95 энергии падающей волны. В нашей стране высокоэффективные перфорированные звукопоглощающие конструкции были разработаны Г.Д. Малюжинцем и С.И. Ржевкиным.
![]() |
Расчетные соотношения. ??????????? ??????? ??????????????? ???????????, ??? ? ??? ?????????? ??????????, ???????????? ??????????
в котором S - площадь отверстия, b - длина горла (или, что то же самое, толщина листа), V - объем полости, равный произведению квадрата шага перфорации d на расстояние между листом и преградой d.
![]() |
???????? ?????????????? ?????????? ???????? ?????????? ??????????? ???????????. ??? ??????? ?? ?????? ?????? ??????, ???????????? ?? ????????? ?? ??????? ??????? ?? ?????????? ???????. ??????? ???????? ????? ???????? ???????? ????????? ?????. ??????? ????? ???????? ?? ?????? ?????? (??????) ????? ?????? ??????, ???????????? ?????. ??? ?????????? ?????? ????? ?????? ? ?????? ???????? ???????????? ???????? ? ??????? ?????????, ???????? ???????? ??????, ??????????? ???????, ???????????? ?????? ? ?.?. ?????????????? ?????????? ??????????? ???????? ???? ?. ??????. ??? ???????????? ????? ????, ?? ??????? ??????? ?????, ???????, ????????????? ??????. ??? ????????????? ????????? ?????????? ????????? ?? ????????, ????, ???????. ? ??????? ?? ??????????????? ??????????? ?????????? ???????? ???????? ? ??????????????? ???????????. ????????? ?????????? ?????????? ?? ??????????? ????????. ??? ?????????? ? ????? F ????????? ???????? ??????????? ???????
где n - порядок резонансной частоты, l, b и d - длина, ширина и толщина материала, r - его плотность.
![]() |
????? ??????? ???????? 2 ? 1 ?, ???????? 0,2 ?? ? ?????????? 200 ?/?3 ???????? ? ????? 1,6 ?. ????? ??????????? ???????
Следовательно, резонансные частоты будут 50, 100 Гц и т.д. Коэффициенты поглощения мембранных конструкций достигают:
· для фанеры и бумажно-слоистого пластика примерно 0,5;
· для щитов Бекеши - 0,8.
Отметим интересный факт. Г. Гельмгольц использовал набор резонаторов с разными резонансными частотами для анализа спектров звуковых колебаний. С помощью этого своеобразного анализатора Гельмгольц наблюдал, какие резонаторы отзываются на разные частотные составляющие спектра. Он же применил комбинации резонаторов для синтеза гласных звуков речи.
Экспериментальное исследование взаимодействия упругих волн
в акустическом резонаторе.
В.Е.Назаров, А.В.Радостин, И.А.Соустова
Институт прикладной физики РАН
В акустике подробно изучены нелинейные эффекты, возникающие при распространении и взаимодействии упругих волн в твердых телах, уравнение состояния которых описываются 5-ти константной теорией упругости. Подобный подход, как правило, справедлив для описания однородных сред. Для микронеоднородных сред, в частности горных пород, содержащих различные дефекты (дислокации, зерна, трещины и т.д.) даже при относительно небольших деформациях, уравнение состояния часто характеризуется неоднозначной (гистерезисной) зависимостью «напряжение – деформация» и может также содержать диссипативную нелинейность. При распространении интенсивных упругих волн в таких средах наблюдаются нелинейные эффекты: амплитудно-зависимые потери, изменение скорости волны, генерация высших гармоник и т.д. Наиболее сильно эти эффекты проявляются в акустических резонаторах. Такие эксперименты проводились с некоторыми металлами и горными породами [1-3]. В настоящей работе представлены результаты экспериментальных исследований влияния мощной волны накачки на слабую волну в резонаторе из песчаника - горной породы, встречающейся в местах добычи нефти и газа. Эксперименты проводились со стержневым резонатором диаметром d = 2.5см и длиной L = 28см. Блок-схема измерительной установки представлена рис.2.
|
Рис.2 |
|
Рис.3 |
Пьезокерамический излучатель слабой волны (2) был приклеен к торцу образца (1) и массивному (М = 2 кг) титановому концентратору (4), являющемуся излучателем мощной волны накачки (ее минимальный уровень превышал максимальный уровень слабой волны примерно на 30 дБ), так что граничное условие на этом торце резонатора было близко к условию на абсолютно жесткой поверхности. К другому концу стержня приклеивался пьезоакселерометр (6) достаточно малой массы, так что эта граница была близка к акустически мягкой. Для таких резонаторов спектр собственных частот определяется следующим выражением: fn =c0 (2n‑1)/4L , где c0 - скорость продольной волны в стержне, n = 1,2…- номер продольной моды резонатора. С пьезоакселерометра сигнал поступал на спектроанализатор (10) для измерения амплитуды накачки, а также через режекторный фильтр (9), подавляющий сигнал на частоте накачки на 30 дБ, на селективный вольтметр (8) и осциллограф (7), где производилось измерение уровня слабого сигнала. Собственные частоты первых продольных мод резонатора при малых амплитудах возбуждения составляли соответственно 2250 Гц, 6800 Гц, 10150 Гц и 16650 Гц, а добротности - 45, 90, 81 и 93. Таким собственным частотам соответствует c0 »2500 м/с. Измерения проводились для слабой волны на 4-й моде резонатора и для накачки на 1-й моде, а также - наоборот. На рис.3 приведены резонансные кривые для слабой волны на 4-й моде в присутствии накачки на 1-й моде при различных ее амплитудах. Видно, что с ростом амплитуды волны накачки происходит сдвиг резонансной частоты и расширение резонансной кривой, т.е. уменьшение добротности резонатора
| |
Рис.4 | Рис.5 |
На рис.4 в логарифмическом масштабе приведена зависимость сдвига резонансной частоты D F от амплитуды деформации волны накачки e 1 , из которого следует, что D F µ e 1 . На рис.5 приведена зависимость амплитуды слабой волны A (в резонансе) от e 1 , из которого видно, что A µ e 1 . Аналогичные зависимости наблюдались и в случае возбуждения слабой волны на 1-й моде резонатора, а накачки - на 4-й.
Аналитическое описание сдвига резонансной частоты проведено в рамках уравнения состояния, содержащего упругую нелинейность:
,
где E - модуль Юнга, f( e ) - малая нелинейная поправка (|f( e )|<<| e | ), a - коэффициент диссипации, r - плотность. С помощью методов, изложенных в работах [1,4], получена резонансная кривая стержня для слабой волны на 4-й моде резонатора при накачке на 1-й моде:
,
где A0 - амплитуда слабой волны, создаваемой излучателем, d = w n - w - расстройка частоты от резонанса, B0 =<f ў e >= g e 1 , где g - эффективный параметр упругой нелинейности песчаника. Из сравнения экспериментальной и аналитической зависимости получаем оценку для параметра упругой нелинейности песчаника: g »2Ч103 . Отметим, что полученное значение параметра упругой нелинейности существенно превышает характерные значения для однородных сред (g <10).
Таким образом, уравнение состояния, содержащее упругую нелинейность, описывает только сдвиг резонансной частоты, и не описывает уменьшение добротности резонатора для слабой волны в поле мощной волны накачки. Для объяснения этого эффекта необходимо предположить, что песчаник обладает также и диссипативной акустической нелинейностью.
Работа выполнена при поддержке РФФИ (гранд 96-15-96603).
Использованная литература:
1) «Три взгляда на акустику помещений» А.П. Ефимов, журнал «Install Pro Magazine», 2000 г.
2) Назаров В.Е., Островский Л.А., Соустова И.А., Сутин А.М. «Акустический журнал», №3,1988 г.
3) « Физика металлов и металловедение» Назаров В.Е. 1992.