Реферат: Алгоритми розрахунку періодичного режиму в нелінійній схемі
Тому (6) являє собою нескінчену систему трансцендентних (нелінійних) рівнянь відносно комплексних амплітуд напруг.
При практичних розрахунках досить врахувати постійну складову і кілька гармонік напруги. Так можна зробити тому, що розглянуті схеми вибірні. Звичайно, кількість гармонік, які беруться до уваги, повинен визначити розробник. Зазначимо, що в інженерній методиці розрахунку подібних схем, враховується лише одна гармоніка.
Допустимо, встановлено, що досить полічити N гармонік. Тобто, система (6) складається з (2 N + 1) рівнянь. Таким чином, розрахунок періодичного режиму спектральним методом зводиться до рішення системи нелінійних рівнянь. Різновиди методу визначаються способом рішення цієї системи.
Потрібно взяти до уваги особливість рівнянь (6): в них нелінійні функції (7) в деяких випадках можна описати аналітично. У зв’язку з цим, далі не розглядатимемо способи рішення (6), які спираються на аналітичне уявлення функції (7). Тому нижче зупинимося на двох способах: перший – ітераційний метод Ньютона; другий – різновид пропонованого у методу, що спирається на інтегрування диференційних рівнянь.
2 Алгоритм рішення системи нелінійних рівнянь методом Ньютона.
Запишемо рівняння (17) у векторно-матричній формі
, (8)
де - вектор комплексних амплітуд струму комплексних амплітуд напруги;
- вектор нелінійного опору;
- вектор комплексних амплітуд заряду нелінійної ємності;
- вектор складової джерела струму;
та - квадратні діагональні матриці. Розмірність векторів та матриць дорівнює 2N+1.
Ліва частина формули (7), виявляється трансцендентною векторною функцією, аргумент якої – вектор напруги
. (9)
За допомогою формули (7) отримаємо співвідношення для методу Ньютона стосовно (9)
. (10)
Верхній індекс вектора напруги вказує на номер ітерації.
Якщо в (9) підставити , то в лівій частині не отримаємо нуль. Тому вектор – функцію називають незв’язною.
Продиференцюємо (10) по вектору
. (11)
Нагадаємо, що похідна від вектор-функції незв’язності за векторним аргументом виявляється матрицею Якобі. Як видно, вона складається з трьох складових. Позначимо і елементи матриць та .Тоді
, , .
В даному випадку використання методу Ньютона особливо ефективне, оскільки вдається отримати аналітичний вираз для і . Покажемо, як знаходиться, наприклад, .
За визначенням
.
Величину запишемо у вигляді
.
В свою чергу ,
.