Реферат: Алгоритмические машины

1. Следует ли фиксировать конечную границу для размера входных данных?

2. Следует ли фиксировать конечную границу для числа элементарных шагов?

3. Следует ли фиксировать конечную границу для размера памяти?

4. Следует ли ограничить число шагов вычисления?

На все эти вопросы далее принимается ответ «НЕТ», хотя возможны и другие варианты ответов, поскольку у физически существующих ЭВМ соответствующие размеры ограничены. Однако теория, изучающая алгоритмические вычисления, осуществимые в принципе, не должна считаться с такого рода ограничениями, поскольку они преодолимы, по крайней мере, в принципе (например, любой фиксированный размер памяти всегда можно увеличить на одну ячейку).

Таким образом, уточнение понятия алгоритма связано с уточнением алфавита данных и формы их представления, памяти и размещения в ней данных, элементарных шагов алгоритма и механизма реализации алгоритма. Однако эти понятия сами нуждаются в уточнении. Ясно, что их словесные определения потребуют введения новых понятий, для которых, в свою очередь, снова потребуются уточнения и т.д. Поэтому в теории алгоритмов принят другой подход, основанный на конкретной алгоритмической модели, в которой все сформулированные требования выполняются очевидным образом. При этом используемые алгоритмические модели универсальны, то есть моделируют любые другие разумные алгоритмические модели, что позволяет снять возможное возражение против такого подхода: не приводит ли жесткая фиксация алгоритмической модели к потере общности формализации алгоритма? Поэтому данные алгоритмические модели отождествляются с формальным понятием алгоритма.

Всякому алгоритму соответствует задача, для решения которой он был построен. Обратное утверждение в общем случае является неверным по двум причинам: во-первых, одна и та же задача может решаться различными алгоритмами; во-вторых, можно предположить (пока), что имеются задачи, для которых алгоритм вообще не может быть построен.

Как уже отмечалось, термин «алгоритм» появился в математике достаточно давно и использовался долго – под ним понималась процедура, позволявшая путем выполнения последовательности определенных элементарных шагов получать однозначный результат, не зависящий от того, кто эти шаги выполнял. Таким образом, само проведенное решение служило доказательством существования алгоритма. Однако был известен целый ряд математических задач, разрешить которые в общем виде не удавалось. Примерами могут послужить три древние геометрические задачи: о трисекции угла, о квадратуре круга и об удвоении куба – ни одна из них не имеет общего способа решения с помощью циркуля и линейки без делений.

Интерес математиков к задачам подобного рода привел к постановке вопроса: возможно ли, не решая задачи, доказать, что она алгоритмически неразрешима, т.е. что нельзя построить алгоритм, который обеспечил бы ее общее решение? Ответ на этот вопрос важен, в том числе и с практической точки зрения, например, бессмысленно пытаться решать задачу на компьютере и разрабатывать для нее программу, если доказано, что она алгоритмически неразрешима. Именно для ответа на данный вопрос и понадобилось сначала дать строгое определение алгоритма, без чего обсуждение его существования просто не имело смысла. Построение такого определения, как мы знаем, привело к появлению формальных алгоритмических систем, что дало возможность математического доказательства неразрешимости ряда проблем. Оно сводится к доказательству невозможности построения рекурсивной функции, решающей задачу, либо к невозможности построения машины Тьюринга для нее, либо несостоятельности любой другой модели. То есть задача считается алгоритмически неразрешимой, если не существует машины Тьюринга (или рекурсивной функции, или нормального алгоритма Маркова), которая ее решает.

Первые доказательства алгоритмической неразрешимости касались некоторых вопросов логики и самой теории алгоритмов. Оказалось, например, что неразрешима задача установления истинности произвольной формулы исчисления предикатов – эта теорема была доказана в 1936 г. Чёрчем.

В 1946-47 гг. А.А. Марков и Э. Пост независимо друг от друга доказали отсутствие алгоритма для распознавания эквивалентности слов в любом ассоциативном исчислении.

В теории алгоритмов к алгоритмически неразрешимой относится «проблема остановки»: можно ли по описанию алгоритма (Q ) и входным данным (x ) установить, завершится ли выполнение алгоритма результативной остановкой? Эта проблема имеет прозрачную программистскую интерпретацию. Часто ошибки разработки программы приводят к зацикливанию – ситуации, когда цикл не завершается и не происходит завершения работы программы и остановки. Неразрешимость проблемы остановки означает, что нельзя создать общий, пригодный для любой программы алгоритм отладки программ. Неразрешимой оказывается и проблема распознавания эквивалентности алгоритмов: нельзя построить алгоритм, который для любых двух алгоритмов выяснял бы, всегда ли они приводят к одному и тому же результату или нет.

Важность доказательства алгоритмической неразрешимости в том, что если такое доказательство получено, оно имеет смысл закона-запрета, позволяющего не тратить усилия на поиск решения, подобно тому, как законы сохранения в физике делают бессмысленными попытки построения вечного двигателя. Вместе с этим необходимо сознавать, что алгоритмическая неразрешимость какой-либо задачи в общей постановке не исключает возможности того, что разрешимы какие-то её частные случаи. Справедливо и обратное утверждение: решение частного случая задачи еще не дает повода считать возможным её решения в самом общем случае, т.е. не свидетельствует об ее общей алгоритмической разрешимости.

Роль абстрактных алгоритмических систем в том, что именно они позволяют оценить возможность нахождения общего решения некоторого класса задач. Для специалиста в области информатики важно сознавать, что наличие алгоритмически неразрешимых проблем приводит к тому, что оказывается невозможным построить универсальный алгоритм, пригодный для решения любой задачи. К подобным проблемам приводят и попытки алгоритмизировать сложную интеллектуальную деятельность человека, например, обучение других людей, сочинение стихов и пр.

2. Алгоритм как абстрактная машина

Понятие, в особенности частично рекурсивной функции, является одним из главных понятий теории алгоритмов. Значение его состоит в следующем. С одной стороны, каждая стандартно заданная частично рекурсивная функция вычислима путем некоторой процедуры механического характера, отвечающей интуитивному представлению об алгоритмах. С другой стороны, какие бы классы точно очерченных алгоритмов ни строились, во всех случаях неизменно оказывалось, что вычислимые посредством них числовые функции являлись частично рекурсивными. Поэтому общепринятой является научная гипотеза, формулируемая как тезис Чёрча: «Класс осуществляемых операций, попадающих, таким образом, под определение «алгоритма» (или «вычисления», или «выполнимой процедуры», или «рекурсивной операции»), остался бы в точности тем же самым, если мы расширим определение наших машин...».

Этот тезис дает алгоритмическое истолкование понятия частично рекурсивной функции. Его нельзя доказать, поскольку он связывает нестрогое математическое понятие интуитивно вычислимой функции со строгим математическим понятием частично рекурсивной функции. Однако исследования, проводившиеся весьма многими математиками в течение нескольких десятилетий, выявили полную целесообразность считать понятие частично рекурсивной функции научным эквивалентом интуитивного понятия вычислимой частичной функции.

Тезис Чёрча оказался достаточным, чтобы придать необходимую точность формулировкам алгоритмических проблем и в ряде случаев сделать возможным доказательство их неразрешимости. Причина заключается в том, что обычно в алгоритмических проблемах математики речь идет не об алгоритмах, а о вычислимости некоторых специальным образом построенных функций. В силу тезиса Чёрча вопрос о вычислимости функции равносилен вопросу о ее рекурсивности. Понятие рекурсивной функции строгое. Поэтому обычная математическая техника позволяет иногда непосредственно доказать, что решающая задачу функция не может быть рекурсивной. Именно этим путем самому Чёрчу удалось доказать неразрешимость основной алгоритмической проблемы логики предикатов – проблемы тождественной истинности формул исчисления первой ступени.

Точное описание класса частично рекурсивных функций вместе с тезисом Чёрча дает одно из возможных решений задачи об уточнении понятия алгоритма. Однако это решение не вполне прямое, так как понятие вычислимой функции является вторичным по отношению к понятию алгоритма. Спрашивается, нельзя ли уточнить непосредственно само понятие алгоритма и уже затем при его помощи определить точно и класс вычислимых функций? Такое направление поиска привело к построению иного, нежели рекурсивные функции, класса моделей алгоритма. Основная его идея состоит в том, что алгоритмические процессы – это процессы, которые может осуществлять определенным образом устроенная машина, моделирующая тем самым выполнение отдельных операций человеком. Функционирование такой машины и есть выполнение некоторого алгоритма.

Исходя из свойств алгоритма, можно сформулировать общие требования к таким машинам:

1. характер их функционирования должен быть дискретным, т.е. состоять из отдельных шагов (команд), каждый из которых выполняется только после завершения предыдущего;

2. действия должны быть детерминированы, т.е. шаги выполняются в строгом порядке, а их результат определяется самим шагом и результатами предыдущих шагов;

3. перед началом работы машине предоставляются исходные данные из области определения алгоритма;

4. за конечное число шагов работы машины должен быть получен результат или информация о том, что считать результатом;

5. машина должна быть универсальной, т.е. такой, чтобы с её помощью можно было бы выполнить любой алгоритм.

Чем проще структура (устройство) описанной машины и чем элементарнее ее шаги, тем больше оснований считать, что ее работа и есть выполнение алгоритма. Чтобы ответить на вопрос, какие шаги работы машины следует отнести к элементарным, вернемся к тому обстоятельству, что нас интересует преобразование информации, представленной с помощью некоторого конечного алфавита. Требование конечности алфавита является очевидным следствием того обстоятельства, что решение должно быть получено за конечное число шагов. Если информация не представлена в дискретной форме, например вещественное число, то его обработка в общем случае может содержать бесконечное число шагов, например нахождение цифр числа π или извлечение квадратного корня из числа 2. Таким образом, алгоритм оказывается конечной последовательностью действий, производимых над данными, представленными с помощью конечного алфавита. С учетом сказанного становится понятным определение алгоритма, которое дает В.М. Глушков: «Алгоритм это любая конечная система правил преобразования информации (данных) над любым конечным алфавитом».

Пусть исходные данные из области определения алгоритма представлены посредством алфавита A и образуют при этом конечную последовательность знаков {a1 …an } – такая последовательность называется словом. В результате выполнения алгоритма сформируется новое слово {b1 …bm }, представленное, в общем случае, в другом алфавите B. На первый взгляд для проведения такого преобразования в качестве элементарных выделяются следующие операции (шаги):

1. замена одного знака исходного слова ai знаком bj из алфавита B;

2. удаление знака исходного слова;

3. добавление к исходному слову знака из алфавита B.

К-во Просмотров: 300
Бесплатно скачать Реферат: Алгоритмические машины