Реферат: Анализ экономических задач симплексным методом

.

Говорят, что ограничение ЗЛП имеет предпочтительный вид, если при неотрицательной правой части левая часть ограничений содержит переменную, входящую с коэффициентом, равным единице, а в остальные ограничения равенства - с коэффициентом, равным нулю.

Пусть система ограничений имеет вид

Сведем задачу к каноническому виду. Для этого прибавим к левым частям неравенств дополнительные переменные . Получим систему, эквивалентную исходной:

,

которая имеет предпочтительный вид

.

В целевую функцию дополнительные переменные вводятся с коэффициентами, равными нулю .

Пусть далее система ограничений имеет вид

Сведём её к эквивалентной вычитанием дополнительных переменных из левых частей неравенств системы. Получим систему

Однако теперь система ограничений не имеет предпочтительного вида, так как дополнительные переменные входят в левую часть (при ) с коэффициентами, равными –1. Поэтому, вообще говоря, базисный план не является допустимым. В этом случае вводится так называемый искусственный базис. К левым частям ограниче­ний-равенств, не имеющих предпочтительного вида, добав­ляют искусственные переменные . В целевую функцию переменные , вводят с коэффициентом М в случае реше­ния задачи на минимум и с коэффициентом -М для за­дачи на максимум, где М - большое положительное число. Полученная задача называется М-задачей, соот­ветствующей исходной. Она всегда имеет предпочти­тельный вид.

Пусть исходная ЗЛП имеет вид

(1)

(2)

(3)

причём ни одно из ограничений не имеет предпочтительной переменной. М-задача запишется так:

(4)

(5)

, , (6)

Задача (4)-(6) имеет предпочтительный план. Её начальный опорный план имеет вид

Если некоторые из уравнений (2) имеют предпочтительный вид, то в них не следует вводить искусственные переменные.

Теорема. Если в оптимальном плане

(7)

М-задачи (4)-(6) все искусственные переменные , то план является оптимальным планом исходной задачи (1)-(3).

Для того чтобы решить задачу с ограничениями, не имеющими предпочтительного вида, вводят искусственный базис и решают расширенную М-задачу, которая имеет начальный опорный план

К-во Просмотров: 1501
Бесплатно скачать Реферат: Анализ экономических задач симплексным методом