Реферат: Анализ проблем оценки качества электроэнергии
Синусоидальность токов и напряжений
Симметричность напряжений
Эти параметры могут измениться во время нормального функционирования электрической системы из-за изменений нагрузки, помех вызванных потребителем и возникновением короткого замыкания. Как следствие, эти параметры могут изменятся во времени в каждой точке потребления энергии, и в каждый момент времени они, могут быть, не равны в различных точках электрической сети. В большинстве случаев статистическая оценка таких процессов помогает собрать важные средние значения, чтобы собрать информацию о качестве электроэнергии.
6.1 Изменение частоты
Отключение мощных генераторов или коммутация главных потребителей может приводить к изменению частоты питающего напряжения в следствие переходных процессов. Эти изменения эффективно корректируются первичным контуром управления генератора. Потом, энергия передаваемая через соединённые сети регулируется генераторной станцией, которая осуществляет вторичное регулирование. Первичное регулирование обеспечивает, в замкнутых сетях, среднее изменение частоты стремящееся к нулю. Частота сети влияет на работу двигателей (изменение скорости вращения), быстродействие некоторых электронных устройств, где частота используется в целях синхронизации, потерях в магнитных материалах и бесполезности фильтров гасящих гармонические искажения. Изменения частоты характеризуются в процентном соотношении к номинальной частоте.
6.2 Изменение амплитуды
Изменение амплитуды(медленные изменения напряжения) Напряжение электрической сети непрерывно изменяется из-за процессов коммутации электрических устройств питающихся от сети. Изменение напряжения может быть медленным или быстрым в зависимости от того, происходит ли плавное изменение нагрузки или ступенчатое в следствие коммутации мощного потребителя. Импеданс энергосистемы оказывает большое влияние на величину отклонения напряжения при изменении нагрузки: чем выше импеданс, тем больше размах отклонений.
6.3 Флуктуации напряжения
Флуктуации напряжения (быстрые изменения напряжения). Серия быстрых изменений напряжения называется флуктуацией напряжения. Отличие "быстрых" изменений напряжения от "медленных" до конца не определено, и эти отличия могут приниматься в пределах о нескольких секунд до минуты. "Медленные" изменения напряжения оцениваются через средние значения десятиминутных интервалов. "Быстрые" изменения напряжения могут быть единичными и многократными и их амплитуда обычно не превышает номинальную более чем на 6-8 процентов. Обычно электрическое устройство в состоянии работать даже при таких искажениях(в большинстве случаев, скорректированных регулятором напряжения), если опорное напряжение не слишком мало. Изменения напряжения такого рода вызваны переменными нагрузками, такими как сварочные машины, дуговыми печами и дробилками. Изменения напряжения более чем на 10% от номинального, не зависимо от продолжительности, называются бросками напряжения.
6.4 Доза фликера
Термин "доза фликера" применяется как систематическая или случайная вариация амплитуды напряжения в пределах от 0.9 до 1.1 от номинального. Иногда термины фликер и изменения напряжения используются взаимозаменяемо. Но изначально, фликер характеризует именно визуальное восприятие нестабильности светового потока, чья интенсивность и спектральный состав изменяются во времени. Амплитуда изменений напряжения обычно - меньше чем 10 %, поэтому поведение электрических устройств не меняется. Не смотря на это, подобные небольшие возмущения вызывают изменения светового потока, заметные человеческому глазу. Эта визуальная чувствительность сильно зависит от частоты возмущающих процессов, и достигает своего пика при частоте приблизительно 7-10 Гц. В этом диапазоне будет заметно изменение величины действующего напряжения питающего источник света даже на 0,3% от номинального.
Невозможно полностью избавиться от фликера, но в значительной степени уменьшить этот эффект можно через:
• увеличение мощности короткого замыкания системы электроснабжения;
• уменьшение циркулирующей реактивной мощности
• ограничение пусковых токов электродвигателей
6.5 Просадки напряжения
Просадки напряжения – кратковременные перерывы энергоснабжения. Просадки напряжения это двумерные электромагнитные возмущения которые характеризуются амплитудой и продолжительностью. Суть просадки заключается в том, что в этом периоде энергия к потребителю не подводится должным образом и это может вызывать различные последствия в зависимости от типа нагрузки. В соответствии со стандартом международной электротехнической комиссии, под просадками напряжения подразумеваются внезапные уменьшения напряжения, затрагивающие распределительную сеть, ниже 90 % от опорного напряжения.
Это уменьшения должны быть восстановлены в течении 60 с. Всякий раз, когда напряжение падает до нуля, это классифицируется как кратковременные перерывы энергоснабжения.
Продолжительность кратковременного провала напряжения - интервал между моментом, когда напряжение падает ниже порогового значения и момент, когда напряжение снова повышается выше порога. Глубина кратковременного провала напряжения – это разность между номинальным и остаточным напряжением.
Пусковые режимы мощных потребителей и короткие замыкания сети это основные причины провалов напряжения. Провалы, вызванные пусковыми токами, менее глубоки и но более продолжительны(до нескольких секунд) чем провалы вызванные короткими замыканиями сети (меньше чем одна секунда). Во время пуска энергоёмких потребителей, величина токов протекающих по сети, может быть значительно больше чем в установившемся режиме. А так как фидеры и кабель системы электроснабжения сконструированы для работы в установившемся режиме, высокие значения тока вызывают значительное падение напряжения.
6.6 Изменение формы волны
Гармоники. Если искажение электрической волны непрерывное и периодическое, оно может быть рассмотрено в трёх вариациях: как среднее значение, вычисленное за один период рассматриваемого сигнала, основная составляющая имеющая ту же самую частоту что и у рассматриваемого сигнала и сумма гармонических составляющих. Амплитуда гармоники уменьшается с ростом частоты. Визуальное представление называется спектр.
Что касается симметричных форм волны (у которых положительные и отрицательные полуволны идентичны), там четные гармоники практически не проявляются. Этот тип гармоники был распространен, когда применялись полупериодные выпрямители. Поставщики электроэнергии предоставляют синусоидальное напряжение с частотой 50 Гц, но ток потребляемый нагрузкой не всегда синусоидальный. Ток нагрузки не будет иметь синусоидальную форму, если импеданс нагрузки изменяется в течении периода Т волны(то есть нагрузка имеет нелинейную вольт-амперную характеристику). Такие типы потребителей называются нелинейными. Например, ток намагничивания трансформатора искажен гармоникой третьего порядка из-за нелинейной характеристики намагничивания. Выпрямители (зарядные устройства, сварочные машины, и т.д.), инверторы, электронные стартеры, приводы с регулируемой частотой вращения, газоразрядные лампы – и это не полный список нелинейных потребителей. Искаженный ток вызывает падения напряжения так, что результирующее напряжение, питающее сеть, перестаёт иметь синусоидальную форму. Напряжение питающей сети – это напряжение подаваемое трансформатором минус падение напряжения на фидере. Таким образом, на искажение напряжения влияет ещё и расстояния от трансформатора до нагрузки и полное сопротивление линии электропередачи. Короче говоря, искажение напряжения, влияющее на определённый точку сети, зависит от значения тока короткого замыкания в этой точке. Кроме того, как только напряжение сети стало искажено, линейной нагрузка начинает потреблять искаженный ток. Присутствие такой гармоники в сети ответственно за негативные последствия. Кроме того, на более высоких частотах, увеличиваются потери в железе (потери на гистерезис и добавочные потери) а так же потери в кабельных линиях. Наконец, электронное оборудование может сбоить из-за присутствия гармоник.
Другим аспектом, которым нельзя пренебречь, является проблема паразитных резонансов, связанная с присутствием гармонических составляющих в электрических сетях. Фактически, в случае резонанса, амплитуда отдельно рассматриваемой гармоники может увеличиться в несколько раз относительно нормального функционирования системы. Следовательно это вызовет большой ток который может серьезно повредить конденсаторы и другое оборудование, присоединенное к сети.
Чтобы предотвратить такое развитие событий, резонансная частота сети на каждом участке сети должна быть известна и должны быть смонтированы хорошо подобранные, анти-резонансные индуктивные элементы, которые могут предотвращать колебательные процессы.
6.7 Некратные гармоники
Некратная гармоника - специфическая гармоника, частота которой не является кратной частоте основной гармоники. Исследование такой гармоники за прошедшие несколько лет вызывает всёвозрастающий интерес из-за массивного внедрения приборов силовой электроники которые и генерируют некратные гармоники. Мы можем наблюдать такие гармоники в тех устройствах, в которых по крайней мере один элемент, не синхронизирован с базовой частотой энергосистемы. Существует большое количество потребителей, генерирующих некратные гармоники тока или напряжения, например дуговые печи, сварочные станки и циклоконвертеры.
6.8 Асимметрия напряжений
Трехфазное устройство симметрично и сбалансировано, когда напряжения и токи имеют одинаковую амплитуду в каждой фазе и углы между фазами равны 120 градусам. Обычно, произведенная электроэнергия отлично сбалансирована из-за особенностей строения синхронного генератора. Кроме того, действием некоторых геометрических асимметрий в сетях электроснабжения можно пренебречь. Так что можно заявить, что ассиметричные потребители, потребляющие асимметричные токи, являются основной причиной несимметрии напряжений в питающей сети.