Реферат: Антропогенная динамика ландшафта
Fe, Cu, Co,
Sb
Mn, Ni, Co,
V, Pb, Zn,
Sr, F
Mn. Ni, Co,
V, Ti, Sr
Mn, Ni, V,
Mo, Sr
Ni, V, Cu,
Mo, Sr
Sr, Li, Mn,
Ti
Pb, Mn, Li,
Rb, Cs
Pb, Rb, Cs,
Mn, Zn, Ni
Показательны различия в градациях величин Кн для разных месторождений: на сернокислых ландшафтах меднорудных залежей 10б ≤ К н ≤0,1 (большей частью сульфидные воды), на ландшафтах железорудных залежей 10 ≤ Кн ≤ 0,1, для ассоциаций сточных вод вблизи горнообогатительных производств 104 ≤ КИ ≤0,1. Следовательно, уже сам порядок градаций Кн определяет разную контрастность накопления элементов в разных ландшафтах и в известной мере уровень техногенной «нагрузки» на ландшафт (см. табл. 1, 2, 3).
Оценка уровней накопления элементов в сульфидных водах не полна без сравнения Кн с минерализацией растворов. Последняя достигает 110 г/дм3 и зависит преимущественно от SO4 2- а часто от содержаний Fe, He, Zn, Cи, Мn в ущерб Na, Са, Мg. Нами предложен коэффициент «удельного накопления» Км - характеристика дифференцированного накопления в зависимости от величины минерального остатка или минерализации раствора ( М, г/дм3 ), то есть отношения Кн к М (почти аналог известного коэффициента водной миграции; Перельман, 1947, 1975). По данным о величинах Км можно судить о накоплении элементов, дифференцированном в зависимости от минерализации вод и об интенсивности их водной миграции (табл. 4).
Таблица 4. Миграция элементов в водах горнопромышленных ландшафтов меднорудных залежей
Градации условного накопления, Км | Элементы | Интенсивность миграции |
>105 | Сu, Zn, ТR | Чрезвычайно высокая |
105 -104 | Fe, Cu, Zn, Cd, TR | Весьма высокая |
104 - 103 | Fe, Cu, Zn, Cd, Co, TR | Высокая |
103 -102 | Fe, Al, Mn, Cu, Zn, Cd, Co, Ni, TR | Средняя |
102 - 10 | Fe, Al, Mn, Cu, Zn, Ni, Co, Cd, TR | Незначительная |
10-1 |
Fe, Al, Mn, Cu, Zn, Ni, Co, Cd, Sb, La, Ce | Малая |
1-0,1 |
Fe, Al, Mn, Ni, Co, Sb, La, Mn, La | Крайне малая |
0,1-0,01 | Fe, Mn, La | Нижтожная |
По этому показателю максимальная «нагрузка» выявляется на ландшафты у меднорудных объектов (приотвальные и обрушенные зоны, карьеры), на участки скопления промышленных стоков. Она меньше в ландшафтах у железорудных залежей. По величинам Км отмечается и некоторая специализация рассмотренных геохимических ландшафтов.
Максимальные Км для Ga, Cs, Sr, Fвыявлены в водах (и ландшафтах) железорудных, Fe, Zn, Cu, Al, Sn - для рудничных вод (и ландшафтов) меднорудных месторождений, а наивысшие накопления и самая интенсивная миграция Ni, Co. Mn, V, Sc, ряда РЗ наблюдались в приотвальных, карьерных и водах зон обрушения тех же месторождений. В них же весьма отчетливы спектры Pb, Mo, Cd, Ti, Sb. Можно, следовательно, отметить формирование явной геохимической специализации антропогенных горнопромышленных ландшафтов и контрастность многих элементов в их металлоносных ассоциациях.
Последний признак и является, видимо, показателем специфики объектов, а по положению элементов в ассоциации и уровням их накопления можно судить о мощности источника загрязнения и его длительности.