Реферат: Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях
(14)
Воспользовавшись известными формулами
(15)
представим равенство (14) так:
|
Отсюда вытекают следующие соотношения для расчета постоянной составляющей тока и амплитуд гармоник:
(17)
3. Анализ цепей методом угла отсечки
При работе нелинейной цепи с большими амплитудами входного сигнала, когда степенная аппроксимация не дает хороших результатов применяется кусочно-линейная аппроксимация. Работа НЭ происходит при этом с отсечкой выходного тока, и большое применение находит аналитический метод анализа, получивший название метода угла отсечки.
Форма тока в цепи, содержащей НЭ с характеристикой
(18)
видна из графика, представленного на рисунке 7 (при условии, что на вход подано напряжение ).
Рис. 7. График тока через НЭ при работе с отсечкой тока
График тока имеет характерный вид периодической последовательности косинусоидальных импульсов, которые характеризуются амплитудой и длительностью 2, где – угол отсечки, числено равный половине той части периода, в течение которого через НЭ протекает ток. Период повторения импульсов равен . Спектральный состав такого периодического колебания легко определить, разложив функцию тока в ряд Фурье:
(19)
Угол отсечки легко найти из равенства :
(20)
Функция тока определяется следующим выражением:
. (21)
При :
. (22)
Амплитуды спектральных составляющих тока через НЭ определяются через коэффициенты Берга:
(23)
где коэффициенты являются функциями одного аргумента – угла отсечки , получили название коэффициентов (функций) Берга.
Рис. 8. Графики функций Берга
Анализ графиков функций позволяет сделать вывод о том, при каких углах отсечки амплитуды (n = 0, 1, 2, ...) имеют максимальные или минимальные (нулевые) значения. Это дает возможность с помощью выбора режима работы НЭ (изменяя напряжение смещения ,можно менять ) управлять соотношением амплитуд гармоник в спектре тока через НЭ.
Таким образом, алгоритм вычисления амплитуд гармоник тока через НЭ может быть следующим:
1. По известным значениям , , определяется угол отсечки с помощью формулы (18).