Реферат: Астрофизика

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком. У галилеевской трубы выходного зрачка нет. В сущности, выходной зрачок – это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зренья. Во-вторых, с ростом увеличения становятся все заметней движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и десятки тысяч раз). Приходится искать некоторый оптимум и поэтому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз.

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем «светосильнее» телескоп, т.е. чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют.

Таково было скромное начало развернувшегося позже «Чемпионата» телескопов – длительной борьбы за усовершенствование этих главных астрономических инструментов.


1.2 Схема и устройство оптических телескопов.

После того как в 1609 году Галилей впервые направил на небо телескоп, возможности астрономических наблюдений возросли в очень сильной степени. Этот год явился началом новой эры в науке – эры телескопической астрономии. Телескоп Галилея по нынешним понятиям был несовершенным, однако современникам казалось чудом из чудес. Каждый, заглянув в него, мог убедится, что Луна – это сложный мир, во многом подобный Земле, что вокруг Юпитера обращается четыре маленьких спутника, так же как Луна вокруг Земли. Все это будило мысль, заставляло задумываться о сложности Вселенной, ее материальности, о множестве обитаемых миров. Изобретение телескопа вместе с системой Коперника сыграло немалую роль в ниспровержении религиозной идеологии средневековья.

Изобретение телескопа, как и большинство великих открытий, не было случайным, оно было подготовлено всем предыдущим ходом развития науки и техники. В XVI веке мастера-ремесленники хорошо научились делать очковые линзы, а отсюда был один шаг до телескопа и микроскопа.

Телескоп имеет три основных назначения:

1. Собирать излучения от небесных светил на приемное устройство (глаз, фотографическую пластинку, спектрограф и др.);

2. Строить в своей фокальной плоскости изображение объекта или определенного участка неба;

3. Помочь различать объекты, расположение на близком угловом расстоянии друг от друга и поэтому неразличимые невооруженным глазом.

Основной оптической частью телескопа является объектив, который собирает свет и строит изображение объекта или участка неба. Объектив соединяется с приемным устройством- трубой (тубусом). Механическая конструкция, несущая трубу и обеспечивающая ее наведение на небо, называется монтировкой. Если приемником света является глаз (при визуальных наблюдениях), то обязательно необходим окуляр, в который рассматривается изображение, построенное объективом. При фотографических, фотоэлектрических, спектральных наблюдениях окуляр не нужен. Фотографическая пластинка, входная диафрагма электрофотометр, щель спектрографа и т.д. устанавливаются непосредственное в фокальной плоскости телескопа.

Телескоп с линзовым объективом называется рефрактором, т.е. преломляющим телескопом. Так как световые лучи различных длин волн преломляются по-разному, то одиночная линза дает окрашенное изображение. Это явление называется хроматической аберрацией. Хроматическая аберрация в значительной мере устранена в объективах, составленных из двух линз, изготовленных из стекол с разным коэффициентом преломления (ахроматический объектив или ахромат).

Законы отражения не зависит от длины волны, и естественно возникла мысль заменить линзовый объектив вогнутым сферическим зеркалом (рисунок 4). Такой телескоп называется рефлектором, т.е. отражательным телескопом. Первый рефлектор (диаметром всего лишь в 3 см и длиной в 15 см) был построен ньютоном в 1671 году.

Сферическое зеркало не собирает параллельного пучка лучей в точку; оно дает в фокусе несколько разлитое пятнышко. Это искажение называется сферической аберрацией. Если зеркалу придать форму параболоида вращения, то сферическая аберрация исчезает. Параллельный пучок, направленный на такой параболоид вдоль его оси, собирается в фокусе практически без искажений, если не считать неизбежного размытия из-за дифракции. Поэтому современные рефлекторы имеют зеркала параболоидальной или, как чаще говорят, параболической формы.

До конца XIX века основной целью телескопических наблюдений было изучение видимых положений небесных светил. Важную роль играли наблюдения комет и деталей на планетных дисках. Все эти наблюдения производились визуально, и рефракторы с двулинзовым объективом полностью удовлетворял потребности астрономов.

В конце XIX и особенно в XX веке характер астрономической науки претерпел органические изменения. Центр тяжести исследований переместился в область астрофизики и звездной астрономии. Основным предметом исследования стали физические характеристики Солнца, планет, звезд, звездных систем. Появились новые приемники излучения – фотографическая пластинка и фотоэлемент. Стала широко применяться спектроскопия. В результате изменились и требования к телескопам.

Для астрофизических исследований желательно, чтобы оптика телескопа не накладывала никаких ограничений на доступный диапазон длин волн: земная атмосфера и так ограничивает его слишком сильно. Между тем стекло, из которого делаются линзы, поглощает ультрафиолетовое и инфракрасное излучение. Фотографические иммульсии и фотоэлементы чувствительны в более широкой области спектра, чем глаз, и потому хроматическая аберрация при работе с этими приемниками сказывается сильнее.

Таким образом, для астрофизических исследований нужен рефлектор. К тому же большое зеркало рефлектора изготовить значительно легче, чем двухлинзовый ахромат: надо обработать с оптической точностью (до 1/8 длины световой волны или 0,07 микрона для визуальных лучей) одну поверхность вместо четырех, и при этом не предъявляется особых требований к однородности стекла. Все это привело к тому, что рефлектор стал основным инструментом астрофизики. В астрометрических работах по-прежнему применяются рефракторы. Причина этого состоит в том, что рефлекторы очень чувствительны к малым случайным поворотам зеркала: так как угол падения равен углу отражения, то поворот зеркала на некоторый угол b смещает изображение на угол 2b. Аналогичный поворот объектива в рефракторе дает гораздо меньшее смещение. А так как в астрометрии надо измерять положение светил с максимальной точностью, то выбор был сделан в пользу рефракторов.

Как уже сказано, рефлектор с параболическим зеркалом строит изображение очень четко, однако тут необходимо сделать одну оговорку. Изображение можно считать идеальным, пока оно остается вблизи оптической оси. При удалении от оси появляются искажения. Поэтому рефлектор с одним толь параболическим зеркалом не позволяет фотографировать больших участков неба размером, скажем, 50 x 50 , а это необходимо для исследования звездных скоплений, галактик и галактических туманностей. Поэтому, для наблюдений, требующих большого поля зрения, стали строить комбинированные зеркально-линзовые телескопы, в которых аберрация зеркала исправляется тонкой линзой, часто увиолевой (сорт стекла, пропускающего ультрафиолетовые лучи).

Зеркала рефлекторов в прошлом (XVIII – XIX веках) делали металлическими из специального сплава, однако впоследствии по технологическим причинам оптики перешли на стеклянные зеркала, которые после оптической обработки покрывают тонкой пленкой металла, имеющего большой коэффициент отражения (чаще всего алюминий).

Основными характеристики телескопа являются диаметр D и фокусное расстояние F объектива. Чем больше диаметр, тем больший световой поток Ф собирает телескоп:

(1)

где Е – освещенность объектива и S – его площадь.

Другой существенной характеристикой является относительное отверстие:

(2)

Как не трудно убедиться, освещенность в фокальной плоскости, создаваемая протяженным объектом:

(3)

Поэтому при фотографировании слабых протяженных объектов (туманностей, комет) существенно иметь больше относительное отверстие. Однако с увеличением относительного отверстия быстро возрастает вне осевые аберрации. Чем больше относительное отверстие, тем труднее их устранять. Поэтому относительное отверстие рефлекторов обычно не превышает 1:3. зеркально-линзовые системы и сложные объективы могут обеспечить в некоторых случаях относительное отверстие 1:1 и более.

Для визуального телескопа важный характеристикой является увеличение, равное отношению фокусных расстояний объектива и окуляра:

К-во Просмотров: 915
Бесплатно скачать Реферат: Астрофизика