Реферат: Атмосферная акустика
13700
3000
9310
В авиационной и космической технике используется число Маха (Ма), равное отношению
Ма = Vлетат.аппарата / Vзвука (8.24)
Каждый летательный аппарат рассчитан на предельно допустимое для него Ма. По мере удаления ударной волны от ее источника и
уменьшаются, соответственно падает скорость волны, и она выражается в обычную звуковую волну.
8.3.3 Влияние ветра на скорость звука
В неподвижном воздухе звуковая волна от источника звука Sраспространяется с одинаковой скоростью V во все стороны (при условии изотермичности среды). При наличии ветра скорость звуковой волны в направлении наблюдателя надо рассматривать как определяемую векторной суммой ее скорости в неподвижном воздухе и скорости ветра
с учетом положения наблюдателя.
Пусть источник звука находится в точке S, а наблюдатель в точке М. Вектор ветра имеет направление как показано на рис. 8.8, а ось хх параллельна
. В момент времени t звук из S дойдет до наблюдателя М, пройдя путь SМ и имея скорость Vc . Но за это же время t ветер «перенесет» центр возникших звуковых волн в точку SM , так что SSM = ct. Наблюдателю будет казаться, что по направлению звук пришел из центра SM .
Не трудно показать, что при V>> c справедливо соотношение
Vc V + c соs
(8.25)
где Vc – скорость звука в направлении наблюдателя с учетом скорости ветра с, а угол – можно измерить, V – скорость ветра в неподвижном воздухе.
Аналогично, для оценки получим:
sinsin
(8.26)
Таким образом, зная скорость ветра и измерив , по (8.25) можно достаточно оценить модуль скорости звуковой волны Vc от источника S в направлении наблюдателя М. При этом истинное положение источника S можно найти по углу
из (8.26) и учитывая, что
(8.27)
где знак «–» соответствует расположению S с наветренной стороны ( по отношению к наблюдателю М), а знак «+» с подветренной стороны.
Из (8.25) следует, что при = 0 (М находится точно на линии хх и S с наветренной стороны) влияние ветра на увеличение Vc максимально, так что Vc = V + c. При
= 180 (Sна хх и в подветренной стороне) имеет место максимальное уменьшение Vc , так что Vc = V – c. При
= 90º и 270º ветер не оказывает влияния на модуль скорости Vc (Vc = V). Напротив, звуковая поправка на аберацию
максимальна при
= 90º и 270º, когда sin
= c/ V, и минимальна при
= 0 и 180º, когда sin
= 0.
8.3.4 Распространение звуковых волн в атмосфере
В реальной атмосфере, которая расслоена температурно по вертикали и имеет акустические неоднородности (температурные и влажностные флуктуации за счет турбулентных и конвективных движений), звуковые волны будут преломляться, а так же ослабляться за счет рассеивания и поглощения. При этом преломление (рефракция) наиболее сильно выражена в вертикальной плоскости где температура сильно меняется с высотой, а в горизонтальной ею можно пренебречь.
Рефракция звука в атмосфере. Характер преломления звуковых колебаний в вертикальной плоскости определяется стратификацией атмосферы. Пусть источник звука S находится на земной поверхности (рис. 8.9). Если температура воздуха убывает с высотой, то скорость звука также убывает с высотой и по законам геометрической оптики (акустики) звуковой луч будет преломляться стремясь к нормали zz (рис. 8.9а). При повышении температуры изгиб луча будет обратным и он, испытав полное внутреннее отражение, может вернуться на земную поверхность (рис. 8.9б).
Если источник звука S находится в атмосфере на высоте Н (гром, летательный аппарат и др.), то звуковые волны в отсутствии ветра будут рефрагировать, как это показано на рис. 8.10а и 8.10б в зависимости от стратификации атмосферы.
Наличие сильного ветра может существенно исказить эту картину в зависимости от характера его распределения с высотой.
Рис. 8.10. Рефракция звуковых лучей в атмосфере при сильных звуках на высоте Н и падении а), росте б) температуры с высотой