Реферат: Атомно-водородная энергетика —пути развития

Первые созданные образцы использовали водород в баллонах. Затем появились автомобили с водородом, химически связанным в метиловом спирте (метаноле). В 2002 г. продемонстрированы первые варианты машин, в которых водород генерируется из бензина (рис. 3).

Первый автомобиль на топливных элементах был показан компанией Daimler-Benz в 1994 г. К 2000 г. был готов улучшенный образец NECAR-4, намеченный к опытному выпуску с 2004 г. Топливные элементы и бак, содержащий 100 л жидкого водорода, расположены под полом, что обеспечивает достаточное пространство в салоне для пассажиров и багажа. Мощность электромотора — 74 л.с., максимальная скорость — 160 км/ч, запас хода — 450 км. Движение начинается сразу после нажатия на педаль акселератора. 90% максимальной мощности двигателя достигается за две секунды. Автомобиль с топливными. элементами имеет динамику, сопоставимую с машинами, оснащенными бензиновыми или дизельными моторами.

Партию легковых автомобилей с топливными элементами на жидком водороде на базе популярной модели Ford Focus к выпуску в 2004 г. готовит исследовательский центр американской Ford Motor Company. Немецкий филиал компании Ford Forschungszentrum Aachen в сотрудничестве с 40 университетами из 12 стран создал модель Mondeo P2000 HFC на платформе семейного седана Ford Taurus. Бак с жидким водородом расположен за задним сиденьем, пробег между двумя заправками — 160 км., Партия Mondeo P2000 HFC для опытной эксплуатации будет также собрана в США. Ориентировочная стоимость — 35 тыс. долл. Баварский концерн BMW демонстрирует во многих странах седан BMW 750hl с баком на 140 л жидкого водорода. Максимальная скорость — 200 км/ч, запас хода — 350 км. Роботизированная станция для заправки жидким водородом была построена в 1999 г. в Мюнхене, рядом с аэропортом. 16 машин MBW 750hl с 1999 г. пробежали, в общей сложности, 65 тыс. миль. Японский автоконцерн Toyota начинает выпускать первую партию автомобилей с топливными элементами на жидком водороде ценой 75 тыс. долл. Возможные покупатели — правительство и крупные корпорации. На начальном этапе эксплуатация машин будет только в Токио, где построены специальные заправочные станции. Высокая стоимость автомобилей на топливных элементах с жидким водородом обусловлена высокими требованиями к составным элементам установок ЭХГ и сложной системой хранения водорода при весьма низкой температуре. Дополнительные проблемы возникают при стоянке машины, когда начинаются потери испаряющегося водорода. Хранение водорода под давлением вызывает и другие проблемы.

Потенциально более эффективно хранить водород в гидридах. Гидриды — химические соединения водорода с другими химическими элементами. В настоящее время разрабатываются системы хранения на основе гидридов магния. Некоторые металлические сплавы типа магний-никель, магний-медь и железо-титановые сплавы поглощают водород в относительно больших количествах и освобождают его при нагреве. Гидриды, однако, хранят водород с относительно небольшой плотностью энергии на единицу веса, а процессы их заправки идут недопустимо медленно. Цель проводимых текущих исследований — создать состав, который будет запасать существенное количество водорода с высокой плотностью энергии, легко освобождать его и быть рентабельным. С этой точки зрения уже освоенные в крупнотоннажной химии технологии синтеза водородонесущих химических соединений — аммиака, метанола и некоторых других позволяют уменьшить затраты на необходимую инфраструктуру доставки и заправки водорода, использовать оптимальные системы его хранения на борту. По объемной плотности хранения водорода метанол в 1.5 раза превосходит жидкий водород. К таким системам относится и диметиловый эфир (ДМЭ), производимый из метанола для применения на автотранспорте вместо дизельного топлива.

В связи с этим системы, где источником водорода является жидкий (при атмосферном давлении) метиловый спирт или бензин, представляются более перспективными. При применении метанола упрощается система хранения и транспортировки топлива. С бензином еще проще, но пока не разрешены все проблемы создания недорогого и надежного в эксплуатации конвертера для разложения углеводородов с образованием водорода и углекислого газа. Daimler Chrysler намерен изготовить для опытной эксплуатации партию автомобилей NECAR-3 с топливными элементами на метаноле и запасом хода между двумя заправками 400 миль. У фордовской модели Ford Mondeo P2000 FC5, создаваемой в европейском исследовательском центре компании Ford Forschungzentrum Aachen, 400 топливных ячеек на метаноле массой 172 кг расположены под капотом. При повышенной температуре начинается реакция образования водорода из метанола. Электромотор мощностью 120 л.с. обеспечивает достижение максимальной скорости 145 км/ч. До запуска в производство в 2004 г. создатели машины рассчитывают снизить цену до 15 тыс. долл. Автомобили с электродвигателями и топливными элементами — экологически чистые машины. Но возникают новые технические и экономические проблемы при создании портативных установок для получения водорода непосредственно в силовом агрегате автомобиля. Например, на сегодняшний день после стоянки с неработающим двигателем требуется до двух минут, чтобы вся система начала работать снова. General Motors в апреле 2002 г. продемонстрировала журналистам пикап Chevrolet S10 с топливными элементами, источником водорода для которых служит бензин. General Motors рассчитывает стать первой компанией, которая выпустит миллион автомобилей с топливными элементами. Для реализации проекта необходимо производство в стране бензина без или с ничтожно малым содержанием серы. Галлон такого бензина будет стоить на 5 центов дороже. Цена конвертера для выделения водорода при массовом производстве может быть не более 3 тыс. долл.

Для создания автомобиля на топливных элементах Российский АвтоВАЗ сотрудничает с ракетно-космической корпорацией «Энергия» и предприятиями Минатома России.

Многие автопроизводители стремятся первые партии машин на топливных элементах выпустить в 2004, в крайнем случае — в 2005 г. Японские компании Toyota и Honda объявили, что они начинают опытно-промышленное производство легковых автомобилей с топливными элементами. Ради накопления опыта, необходимого для решения возникающих технических задач, в 2000 г. была начата эксплуатация шести автобусов в Чикаго и Ванкувере (Британская Колумбия, Канада), Несколько лет уйдет на опытную эксплуатацию и отработку наиболее безопасной и технологичной системы. К 2010 г. будет накоплен большой опыт эксплуатации и обслуживания машин с гибридными приводами. Различные направления работ по исключению или резкому сокращению применения бензина на автотранспорте неизбежно приведут к коренному изменению структуры автомобильного парка. Одновременно значительно уменьшится негативное воздействие на окружающую среду, и в жизнь войдут более жесткие экологические нормативы. Определятся экономически эффективные области применения принципиально разных типов двигателей. В результате снизится общая потребность индустриальных стран в углеводородном топливе, снизится его стоимость и уменьшится политическое влияние крупных производителей нефти, в первую очередь — ближневосточных.

В июне 2002 г. о переводе транспортных наземных систем и рыболовецкого флота на водородные системы было объявлено правительством Исландии. В этой стране на новых чистых видах энергии, в первую очередь — геотермальной, базируется вся энергетика и теплоснабжение. Потребление нефтепродуктов осталось только в сфере автотранспорта и рыболовстве, Проведя необходимые сравнения и проектную подготовку, правительство Исландии пришло к выводу о переводе в ближайшие годы на экологически чистое водородное топливо всего парка автомобилей и рыболовецких судов. На основе опыта эксплуатации первых десятков водородных автобусов в Европе в Рейкьявике в начале 2003 г. компанией Shell по проекту ECTOS пущена первая станция заправки автобусов сжатым электролизным водородом производительностью 60 нм3ч. Как основа производства водорода из воды используются керамические высокотемпературные электролизеры.

Стоимость водорода В настоящее время наиболее рентабельный способ производить водород — паровая конверсия. Согласно данным Минэнерго США, в 1995 г. стоимость водорода была 7 долл./ГДж (для условий большого завода), что эквивалентно стоимости бензина 0.24 долл./л. Для расчета принималась стоимость природного газа 2.30 долл./Гдж (80 долл./ 1000нм3), примерно в 3 раза превышающая его стоимость в России. Таким образом, даже при увеличении внутренних цен на природный газ в России в 2-3 раза водород, производимый с помощью ПКМ, будет более дешевым поставщиком энергии, чем бензин при текущих внутренних ценах на углеводородное топливо.

Производство водорода электролизом воды на основе современных технологий оценивается по затратам от 10 до 20 долл. за ГДж. Аналогичные цифры дают оценки, полученные для термохимического производства водорода из воды с использованием энергии ВТГР. В ближайшей перспективе водород, получаемый из воды в процессе паровой конверсии метана с помощью энергии ВТГР, может производиться в стране при затратах ниже 7 долл./ГДж, то есть дешевле, чем бензин при цене последнего в 7-8 руб./л.

Ситуация развивается чрезвычайно быстро В феврале 2003 г. объявлено о начале работ по программе Минэнерго США «Атомно-водородная инициатива», нацеленной на создание до 2015 г. Атомно-водородного комплекса по производству водорода с помощью высокотемпературного ядерного реактора. В июле 2003 г. Сенат США выделил на Атомно-водородную инициативу в 2 раза больше, чем запросила Администрация Президента США.

В июне 2003 г. на сессии Международного энергетического агентства министр энергетики США Спенсер Абрахам заявил, что через 20 лет весь мир (а развитые страны и того раньше) перейдет на новый вид моторного топлива, например, водород. В течение пяти лет на разработку водородного двигателя США потратят 1.7 млрд. долл., а Европейский союз выделит 2 млрд. долл. на создание самого водородного топлива и иных возобновляемых источников энергии. Выступая на конференции Евросоюза в Брюсселе, С. Абрахам призвал Европу присоединиться к разработкам по развитию водородной энергетики, базируясь на атомных энергоисточниках.

25 июня 2003 г. в совместном заявлении Президент США Дж. Буш и председатель Евросоюза Романо Проди заявили о необходимости международного сотрудничества по развитию Водородной энергетики.

Во время российско-американского делового энергетического саммита (Санкт-Петербург, 22-23 сентября 2003 г.) американским и российским министрами энергетики были сделаны заявления о сотрудничестве России и США в работах по развитию водородной экономики.

К-во Просмотров: 269
Бесплатно скачать Реферат: Атомно-водородная энергетика —пути развития