Реферат: Автоматизированный априорный анализ статистической совокупности в среде MS Excel 5
Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.
Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов » к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( ).
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo , Me ) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным , и для него выполняются соотношения:
=Mo=Me
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.
3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к х min и х max ) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне (). Следовательно, по проценту выхода значений признака за пределы диапазона ( ) можно судить о соответствии длины «хвостов» распределения нормальному закону .
Вывод:
1.Гистограмма является одновершинной (многовершинной) .
2. Распределение приблизительно симметрично (существенно асимметрично) , так как параметры , Mo, Me отличаются незначительно (значительно):
= .............., Mo=.............., Me=..............
3. “Хвосты” распределения не очень длинны (являются длинными) , т.к. согласно графе 5 табл.9…..……% вариантов лежат за пределами интервала ()=(………………;…………….) млн. руб.
Следовательно, на основании п.п. 1,2,3, можно (нельзя) сделать заключение о близости изучаемого распределения к нормальному.
II . Статистический анализ генеральной совокупности
Задача 1 . Рассчитанные в табл.3 генеральные показатели представлены в табл.10.
Таблица 10
Описательные статистики генеральной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам | Признаки | |
Среднегодовая стоимость основных производственных фондов | Выпуск продукции | |
Стандартное отклонение , млн. руб. | ||
Дисперсия | ||
Асимметричность As | ||
Эксцесс Ek |
Для нормального распределения справедливо равенство
R N =6 s N .
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN :
- для первого признака R N =………...............,
- для второго признака R N =………...............
Соотношениемежду генеральной и выборочной дисперсиями:
- для первого признака ……, т.е. расхождение между дисперсиями незначительное (значительное) ;
-д ля второго признака ……, т.е. расхождение между дисперсиями незначительное (значительное) .
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки , т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε , которую называют ошибкой выборки (ошибкой репрезентативности) . Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
= |- |
определяет ошибку репрезентативности для средней величины признака.
Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки.
1. Для среднего значения признака средняя ошибка выборки (ее называют также стандартной ошибкой ) выражает среднее квадратическое отклонение s выборочной средней от математического ожидания M[] генеральной средней .