Реферат: Bachelor

Метод низкочастотной маскирующей помехи заключается в подаче в линию при положенной трубке маскирующего сигнала (наиболее часто, типа “белого шума”) речевого диапазона частот и применяется для подавления проводных микрофонных систем, использующих телефонную линию для передачи информации на низкой частоте, а также для активизации диктофонов, подключаемых к телефонной линии с помощью адаптеров или индукционных датчиков, что приводит к сматыванию пленки в режиме записи шума.

Исходя из требований, предъявленных в техническом задании наилучшим вариантом является реализовать метод низкочастотной маскирующей помехи.

Наиболее информативным легко измеряемым параметром телефонной линии является напряжение в ней при положенной и поднятой трубке. Это обусловлено тем, что в состоянии, когда телефонная трубка положена, в линию подается постоянное напряжение в пределах 60…64В (для отечественных АТС) или 25…36В (для импортных мини АТС) При поднятии трубки в линию от АТС поступает сигнал, преобразуемый в телефонной трубке в длинный гудок, а напряжение в линии уменьшается до 10…12В. Если к линии будет подключено закладное устройство, то эти параметры изменятся (напряжение будет отличаться от типового для данного телефонного аппарата).

2.ВЫБОР И ОБОСНОВАНИЕ СТРУКТУРНОЙСХЕМЫ УСТРОЙСТВА ЗАЩИТЫ

Основной задачей устройств, с помощью которых осуществляется маскирование речевого сигнала, является перекрытие по диапазону частот речевого сигнала. Происходит наложение мощной помехи на полезный сигнал.

На передающей стороне шумовая помеха складывается с защищаемым сигналом, а на приемной полезный сигнал выделяется из смеси сигнала с шумовой помехой.

Для получения защищенного канала связи разрабатываемое устройство защиты должно формировать псевдослучайную последовательность, которая лежит за пределами речевого диапазона. Нижняя граница спектра мощности помехи не менее 3500Гц, согласно техническому заданию.

Проектируемое устройство защиты телефонной линии должно иметь тактовый генератор для формирования псевдослучайной последовательности, фильтры для выделения полезного речевого сигнала полосой 300…3400Гц и фильтры для выделения помехи с нижней границей не менее 3500Гц, а также сумматоры для формирования смеси полезного сигнала с помехой. Все эти элементы располагаются как на приемной, так и на передающей стороне.Схема канала связи с использованием устройства защиты представлена на рисунке 2.1

. Bachelor

Рисунок 2.1 Схема канала связи

3.ОПИСАНИЕ ПРИНЦИПА РАБОТЫ УСТРОЙСТВА

Речевой сигнал, поступающий на вход телефонной линии, обрабатывается ФНЧ. При этом ФНЧ осуществляет выделение стандартного речевого сигнала полосой 300…3400Гц. Отфильтрованный сигнал в сумматоре складывается с шумовой помехой, которую получают следующим образом: импульсы с тактового генератора подаются на вход генератора ПСП. Вырабатываемая генератором псевдослучайная последовательность преобразуется в шумовую помеху с помощью ЦАП. Затем ограничиваем полученную помеху с помощью ФВЧ, поскольку согласно условию технического задания нижняя граница спектра мощности помехи не менее 3500Гц. После того как отфильтрованный речевой сигнал складывается с внеполосной шумовой помехой, практически невозможно распознать речь при несанкционированном подключении к каналу связи на приемной стороне.

После того как смесь сигнала с шумовой помехой проходит через АТС на передающей стороне на выходе АТС появляется только речевой сигнал, к которому вновь добавляется шумовая помеха. Шумовую помеху получаем также как и на приемной стороне. Из полученной смеси сигнала с шумом выделяем стандартный телефонный сигнал и подаем этот сигнал в телефонную линию, где он будет услышан абонентом.

Зная полосы частот, которые занимают помеха и речевой сигнал можно оценить параметры, которыми должен обладать ФНЧ, чтобы выделять полезный сигнал и ФВЧ для выделения заградительной помехи с требуемой полосой.

Шум и помехи при передаче в аналоговых сетях проявляются в наибольшей степени во время пауз в разговоре, когда амплитуда сигнала мала. Сравнительно небольшой уровень шума, который возникает во время пауз в разговоре, может оказаться весьма раздражающим фактором для слушателя. В то же время такой же уровень шума или помехи во время разговора или помехи во время разговора оказывается практически неощутимым.

Следовательно, качество передачи аналоговой речи определяет абсолютный уровень шума свободного канала. Принятое значение отношения сигнал-шум при передаче от одного оконечного устройства до другого в аналоговой сети связи составляет 46 и 40 дБ соответственно для местных и междугородных линий связи. Отношение сигнал-шум в отдельных системах передачи обязательно выше указанных значений.

Спектр помехи должен находиться как можно ближе к речевому спектру, а амплитуда помехи должна превосходить полезный сигнал на 1-2 порядка.

Т.к. средняя мощность речевого сигнала 88мкВт, а мощность помехи не менее 50мВт, то учитывая, что сопротивление телефонной линии 600Ом, определим уровень помехи и полезного сигнала:

Рп =Uср.п 2 /R; Pc =Ucp . c /R.

BachelorBachelor

Bachelor

Исходя из полученных значений Uср.п и Uср.с : Bachelor

Т.к. уровень помехи во много раз превосходит полезный сигнал, можно обеспечить маскирование полезного сигнала помехой. Для выделения полезного сигнала на приемной стороне фильтр должен уменьшать мощность помехи не менее чем в 10000 раз, тогда ее мощность станет равной 5мкВт, а амплитуда 5,48*10-4 В и можно будет беспрепятственно отделить полезный сигнал от помехи.

Поскольку ширина спектра речевого сигнала ограничивается полосой пропускания ФНЧ, а заградительная помеха ограничивается ФВЧ, то должно обеспечиваться подавление помехи не менее 40дБ.

4.РЕАЛИЗАЦИЯ СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА.

Разрешающие способности любой реальной системы и используемой при ее испытаниях измерительной аппаратуры по амплитуде и по частоте ограничены. Поэтому реакция системы на непрерывный сигнал может быть изучена, если заменить последний импульсным сигналом с соответствующим образом подобранной дискретностью распределения амплитуд. Генератор непрерывных псевдослучайных сигналов можно заменить импульсным генератором. Его точную импульсную копию легко создать, заменив потенциометры импульсными элементами. Так как спектр импульсного сигнала наряду с основной частотой содержит гармоники, спектр сигнала на выходе генератора будет богаче, чем спектр колебания. Подбирая соотношения между амплитудами составляющих спектра сложного выходного сигнала за счет изменений его формы, можно получить заданные амплитудные и спектральные характеристики при использовании электрических простейших связей между каскадами генератора.

Импульсы тактового генератора ГТИ поступают на цепочку, состоящую из N соединенных по счетным входам триггеров (счетчик импульсов). Если частота следования импульсов ГТИ равна f0, то частота импульсов на единичном выходе i-го триггера fi =f0 / 2i , где i= 1,2,…,N. Через сопротивления Ri напряжения поступают на нагрузочное сопротивление R0. Если выполнить условие Ri >>R0, то ui (t)=Uki *1i (t), а

Bachelor

где ki =R0/Ri; U-амплитуды импульсов на выходах триггеров.

Измеряя регулировкой Ri соотношения между амплитудами суммируемых сигналов, можно в широких пределах изменять амплитудные и спектральные характеристики выходного сигнала.

Значения амплитуд спектральных составляющих суммарного сигнала будут определяться значениями амплитуд составляющих Ui , т.е. значениями сопротивления Ri. Меняя Ri можно трансформировать форму, а следовательно, и спектр выходного сигнала.

Анализ формы и спектра возможен только в том случае, если Ri меняется по тому или иному закону в зависимости от номера каскада i.

Один из возможных законов. Сложение сигналов с равными амплитудами. Для простоты предположим, что Ui=U и первый импульс приходит в момент t=T0. Форму выходного сигнала можно определить, составив таблицу состояний триггеров и суммируя напряжения каскадов. Напряжение на выходе схемы может принимать только N+1 значений. Вероятности появления на выходе схемы различных уровней напряжений будут различными. Последнее обстоятельство, а также весьма ограниченный набор возможных уровней напряжения и неравномерность спектра сигнала являются его недостатком. Улучшить качество сигнала можно, сделав амплитуды суммарных сигналов Uki различными.

Выбор числа сумматоров и точек их подключения определяется тем, какой сигнал требуется получить от генератора. Для получения последовательностей с максимальным периодом достаточно иметь один сумматор.

Максимальной длина периода получается только при суммировании сигналов с выходов определенных каскадов регистра. От того, как соединены каскады и каковы их начальные состояния, зависит форма сигнала, т. е. порядок чередования в нем нулей и единиц.

Имея запись реализации псевдослучайного сигнала, мы обнаружим, что в среднем за каждой единицей будут с вероятностями

Bachelor

Bachelor

встречаться единицы и нули соответственно.

Очевидно, что при N®¥P11 ®P01 ®1/2.

К-во Просмотров: 2015
Бесплатно скачать Реферат: Bachelor