Реферат: Балансовые модели
Формула (2) описывает систему из n уравнений, которые называются уравнениями распределения продукции отраслей материального производства по направлениям использования.
Просуммируем по всем отраслям уравнения (1), в результате получим
Аналогичное суммирование уравнений (6.2) дает:
Левые части обоих равенств равны, так как представляют собой весь валовой общественный продукт. Первые слагаемые правых частей этих равенств также равны, их величина равна итогу первого квадранта. Следовательно, должно соблюдаться соотношение
(3)
Левая часть уравнения (3) есть сумма третьего квадранта, а правая часть — итог второго квадранта. В целом же это уравнение показывает, что в межотраслевом балансе соблюдается важнейший принцип единства материального и стоимостного состава национального дохода.
2. Экономико-математическая модель межотраслевого баланса
В пункте 1 отмечено, что основу информационного обеспечения модели межотраслевого баланса составляет технологическая матрица, содержащая коэффициенты прямых материальных затрат на производство единицы продукции. Эта матрица является также основой экономико-математической модели межотраслевого баланса. Предполагается, что для производства единицы продукции в j-й отрасли требуется определенное количество затрат промежуточной продукции i-й отрасли, равное а ij . Оно не зависит от объема производства в отрасли и является довольно стабильной величиной во времени. Величины а ij называются коэффициентами прямых материальных затрат и рассчитываются следующим образом:
(4)
Определение 1. Коэффициент прямых материальных затрат показывает, какое количество продукции i-й отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-й отрасли.
С учетом формулы (4) систему уравнений баланса (2) можно переписать в виде
(5)
Если ввести в рассмотрение матрицу коэффициентов прямых материальных затрат вектор-столбец валовой продукции X и вектор-столбец конечной продукции У:
то система уравнений (5) в матричной форме примет вид
(6)
Система уравнений (5), или в матричной форме (6), называется экономико-математической моделью межотраслевого баланса (моделью Леонтьева, моделью «затраты.— выпуск»). С помощью этой модели можно выполнять три варианта расчетов:
• Задав в модели величины валовой продукции каждой отрасли (Xi ), можно определить объемы конечной продукции каждой отрасли (Yt ):
(7)
• Задав величины конечной продукции всех отраслей (Yj ), можно определить величины валовой продукции каждой отрасли (Xi ):
(8)
• Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых, в этом варианте расчета удобнее пользоваться не матричной формой модели (6), а системой линейных уравнений (5). В формулах (7) и (8) Е обозначает единичную матрицу n-го порядка, а (Е - А)-1 обозначает матрицу, обратную к матрице (Е -А). Если определитель матрицы (Е - А) не равен нулю, т.е. эта матрица невырожденная, то обратная к ней матрица существует. Обозначим эту обратную матрицу через В(Е- А)-1 , тогда систему уравнений в матричной форме (8) можно записать в виде
(8)
Элементы матрицы В будем обозначать через , тогда из матричного уравнения (8) для любой i-й отрасли можно получить следующее соотношение:
(9)
Из соотношений (9) следует, что валовая продукция выступает как взвешенная сумма величин конечной продукции, причем весами являются коэффициенты , которые показывают, сколько всего нужно произвести продукции i-й отрасли для выпуска в сферу конечного использования единицы продукции j-й отрасли. В отличие от коэффициентов прямых затрат
коэффициенты
называются коэффициентами полных материальных затрат и включают в себя как прямые, так и косвенные затраты всех порядков. Если прямые затраты отражают количество средств производства, израсходованных непосредственно при изготовлении данного продукта, то косвенные относятся к предшествующим стадиям производства и входят в производство продукта не прямо, а через другие (промежуточные) средства производства.
Определение 2. Коэффициент полных материальных затрат Ь^ показывает, какое количество продукции i-й отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j-й отрасли.
Коэффициенты полных материальных затрат можно применять, когда необходимо определить, как скажется на валовом выпуске некоторой отрасли предполагаемое изменение объемов конечной продукции всех отраслей:
(10)
где и
— изменения (приросты) величин валовой и конечной продукции соответственно.
3. Коэффициенты прямых и полных материальных затрат
Переходя к анализу модели межотраслевого баланса, необходимо прежде всего рассмотреть основные свойства матрицы коэффициентов прямых материальных затрат А. Коэффициенты прямых затрат по определению являются неотрицательными, следовательно, матрица А в целом может быть названа неотрицательной: . Так как процесс воспроизводства нельзя было бы осуществлять, если бы для собственного воспроизводства в отрасли затрачивалось большее количество продукта, чем создавалось, то очевидно, что диагональные элементы матрицы А меньше единицы:
.
Система уравнений межотраслевого баланса является отражением реальных экономических процессов, в которых содержательный смысл могут иметь лишь неотрицательные значения валовых выпусков; таким образом, вектор валовой продукции состоит из неотрицательных компонентов и называется неотрицательным: . Встает вопрос, при каких условиях экономическая система способна обеспечить положительный конечный выпуск по всем отраслям. Ответ на этот вопрос связан с понятием продуктивности матрицы коэффициентов прямых материальных затрат.
Будем называть неотрицательную матрицу А продуктивной, если существует такой неотрицательный вектор , что
(11)
Очевидно, что условие (11) означает существование положительного вектора конечной продукции Y > 0 для модели межотраслевого баланса (6).
Для того чтобы матрица коэффициентов прямых материальных затрат А была продуктивной, необходимо и достаточно чтобы выполнялось одно из перечисленных ниже условий:
1) матрица (Е - А) неотрицательно обратима, т.е. существует обратная матрица ;
2) матричный ряд сходится, причем его сумма равна обратной матрице (Е - А)-1 ;
3) наибольшее по модулю собственное значение матрицы А, то есть решение характеристического уравнения