Реферат: Бензиновые генераторы. Двигатели внутреннего сгорания

2. Классификация масел по вязкости SAE.

Классификация моторных масел по API для бензиновых двигателей
класс описание
SL Для всех двигателей Рекомендации по техническому обслуживанию двигателя. Советы по выбору моторного масла для бензогенераторов: Существует несколько классификаций моторных масел, мы остановимся на следующих классификациях: 3. Классификация масел по совокупности эксплуатационных свойств API 4. Классификация масел по вязкости SAE автомобилей эксплуатируемых в настоящее время. Масла класса SL созданы для обеспечения лучших высокотемпературных свойств и снижения расхода масла.
SJ Для двигателей автомобилей до 2001 г. выпуска.
SH Для двигателей автомобилей до 1996 г. выпуска.
SG Для двигателей автомобилей до 1993 г. выпуска.
Классификация API различает масла для бензиновых и для дизельных двигателей. Первым соответствует буква S, например - SH, SJ или SL, при этом вторая буква говорит о более высоком уровне. Так, класс SL был введен в практику, улучшив и отчасти заменив класс моторных масел SJ. API - Американский Институт Нефтепродуктов (API - American Petroleum Institute)
Классификация моторных масел по SAE для бензиновых двигателей
Классификация Применение при температуре окружающей среды Обозначение
0W30 0W40 0W50 5W30 5W40 5W50 -40°…+20° -40°…+35° -40°…+45° -30°…+20° -30°…+35° -30°…+45° "Зимнее масло"
10W30 10W40 10W50 ?25°…+30° -25°…+35° -25°…+45° "Всесезонное масло"
15W30 15W40 20W30 20W40 -20°…+35° -20°…+45° -15°…+35° -20°…+45° "Летнее масло"
SAE (Society of Automotive Engineers - Американское Ассоциация Автомобильных Инженеров) описывает свойства вязкости и текучести - способности течь и, одновременно, "прилипать" к поверхности металла. Стандарт SAE J300 подразделяет моторные масла на шесть зимних (0W, 5W, 10W, 15W, 20W, и 25W) и пять летних (20, 30, 40 и 50). Сдвоенный номер означает всесезонное масло (5W-30, 5W-40, 10W-50 и т.д.). Сочетание значений вязкости летнего и зимнего сортов масла не означает арифметического сочетания свойств вязкости. Так, например, масло 5W-30 рекомендовано к эксплуатации при температурах окружающей среды от 30 до +20 градусов. Вместе с этим летнее масло 30 может работать при температурах до 30 градусов, но только при температуре окружающей среды выше нуля. В общем термин "рекомендовано к эксплуатации" очень и очень условный. Каждый двигатель определенной марки автомобиля, либо бензиновый двигатель внутреннего сгорания для спецтехники, отличается уникальным сочетанием степени форсированности, теплонапряженности, особенностей конструкции, применяемых материалов и т. д.

Для бензогенераторов используйте высококачественные масла для 4-х тактных двигателей, отвечающие требованиям автопроизводителей для обслуживания не ниже класса SG. Очень желательно использовать моторные масла соответствующие классу SL по API, которые имеют соответствующую маркировку на упаковке. Моторное масло SAE 10W30 рекомендуется как универсальное - для работы при любых температурах. Используя приведенные данные для выбора оптимальной вязкости масла в соответствии с температурой среды, в которой Вы собираетесь эксплуатировать генератор, Вы можете выбрать и другой сорт масла. Идеальным условием нормальной работы бензогенератора является применение моторных масел класса SL с вязкостными характеристиками по SAE подходящими по температуре окружающей среды, в месте, где работает бензогенератор


2. Как устроены и какими бывают современные двигатели (моторы) для автомобилей

Как все начиналось

В 2008году автомобильный двигатель внутреннего сгорания праздновал свой 147-й день рождения, так как в далеком 1860 году, когда по всему миру «царствовали» конные экипажи, гражданин Франции механик Э. Ленуар сконструировал первый рабочий газовый двигатель. Этот мотор был достаточно капризен и несовершенен, что, в принципе, не странно. Через долгих 6 лет достаточно хорошо известный изобретатель Н. Отто предложил миру свою, довольно совершенную по тем временам конструкцию 4-тактного газового двигателя. Прообразом же двигателя внутреннего сгорания послужила в первую очередь паровая машина, так как единственное принципиальное отличие — отсутствие достаточно громоздкой паро-котельной установки. С «потерей» парового агрегата в процессе эволюции ДВС приобрел свои плюсы: значительно больший КПД, меньшую массу и размеры. Были также и минусы — двигатель требовал более качественного и технологичного топлива, так как работать на дровах он уже отказывался.

В нашей же стране автомобильный двигатель внутреннего сгорания был «изобретен» только в 80-х годах XIX века, именно в это время наш соотечественник О.С. Костович работал над конструкцией бензинового карбюраторного двигателя. Дальнейшее же развитие двигателя внутреннего сгорания связано в первую очередь с именем немецкого инженера Рудольфа Дизеля, так как в 1897 году именно он предложил использовать сжатие для воспламенения топлива. Это было рождением двигателей, работающих на тяжелом топливе, — дизельных двигателей.

Дальнейшее развитие поршневых двигателей внутреннего сгорания шло семимильными шагами. В конструкции моторов менялось многое, но неизменна оставалась лишь его суть. К чему привела эта эволюция ДВС, попробуем разобраться в нашем материале.

Двигатель (мотор) на автомобиле в наши дни

Время, прошедшее со времени сотворения первого двигателя внутреннего сгорания (мотора), безусловно, повлияло и на концепцию создания современного поршневого автомобильного двигателя.

Девиз автомобильного двигателя (мотора) наших дней — больше мощность, меньше расход. Казалось бы, эти два понятия противостоят друг другу, но, оказывается, это не так. И для того, чтобы это подтвердить, двигателисты различных автомобильных компаний не спят ночами, придумывая различные системы, позволяющие поднять КПД двигателя до предела. Для того чтобы понять, в каком направлении в дальнейшем будет развиваться двигателестроение, необходимо уяснить, какие препятствия стоят на пути создания двигателей (моторов). А препятствия следующие: механические потери, неполное использование энергии сгорания топлива, вопросы, связанные с экономичностью, высокая себестоимость современных двигателей и систем управления, увеличение массы мотора, улучшение характеристик двигателя.

Начнем по порядку. Механические потери в современных двигателях можно снизить несколькими способами. Во-первых, значительно ужесточить допуски на изготовление деталей двигателей (моторов). Во-вторых, необходимо уменьшить инерционность кривошипно-шатунной системы, то есть необходимо максимальное облегчение поршней, шатунов, коленчатого и распределительного вала, а также маховика. Недаром в современных моторах (двигателях) используются поршни с короткой «юбкой», изготовленные на основе алюминиевых сплавов. Причем для их производства используются две технологии.

По первой технологии изготавливаются поршни для невысоко форсированных двигателей — их производят различными методами литья.

По второй технологии изготавливаются поршни для форсированных двигателей — методом объемной штамповки (или, проще говоря, ковкой). Распределительные валы изготавливаются пустотелыми по следующей технологии: на охлажденную в жидком азоте трубчатую заготовку вала насаживаются отдельно изготовленные кулачки. Маховик делают максимально легким, чтобы не утруждать двигатель вращением лишней массы, да и отклик на нажатие педали газа при этом сократится.

В-третьих, необходимо упомянуть современные моторные масла с низкой вязкостью, которые тоже делают небольшой вклад в копилку увеличения КПД, так как снижаются потери на трение, как при перекачке по масляным каналам, так и внутри самого масла.

В-четвертых, расширить применение различных антифрикционных покрытий, способных значительно уменьшить силу трения, а также использование деталей, изготовленных на основе соединений нитрида и карбида кремния, то есть керамики.

Следующий оглашенный нами вопрос был посвящен экономичности современных двигателей (моторов). Здесь используются различные концепции минимализации расхода топлива двигателем, просто одни пытаются «выжать» все из бензиновых двигателей, вторые делают ставку на дизельные моторы, ну а третьи строят гибридные силовые установки.

Кто окажется прав, увидим в ближайшем будущем.

Но дело в том, что вне зависимости от того, кто какой концепции придерживается, все используют практически одинаковые технологические наработки. Сегодня, например, невозможно увидеть современный двигатель (мотор) с двумя клапанами на цилиндр. «Почему?» — спросите вы. Да потому, что применение многоклапанного (от 3 до 5 клапанов на цилиндр) газораспределения позволяет снизить насосные потери и увеличить мощность и экономичность двигателя. За примером далеко ходить не надо: попробуйте закрыть одну ноздрю и пробежать метров 300, а потом повторить эксперимент без наложенных ранее ограничений. Почувствовали разницу?

То же самое происходит и с двигателем. Кстати говоря, стоит вспомнить наш автопром, а именно 4‑цилиндровые 8‑ и 16‑клапанные двигатели АвтоВАЗа: при одинаковом объеме 1,5 литра один из них выдавал 78 л. с., а другой — 92. Кроме многоклапанного газораспределения в двигателе (моторе) применяются фазовращатели на газораспределительных валах, с помощью них осуществляется постоянная регулировка фаз впуска и выпуска.

Особенно в этой области преуспели немецкие и японские инженеры. Например, система VANOS от BMW, которая впервые появилась на моторе серии М50 в 1992 году и позволяла регулировать фазы открытия и закрытия только впускных клапанов. Через некоторое время появилась система BI-VANOS, которая заведовала уже как впускными, так и выпускными клапанами. Работа этих систем сводится к следующему. На малых оборотах двигателя (мотора) фазовращатели смещают момент открытия впускного клапана в более поздний период, что обеспечивает топливную экономичность и повышает крутящий момент. При средних оборотах двигателя клапаны открываются чуть раньше, это позволяет увеличить крутящий момент и значительно снизить выбросы вредных веществ в атмосферу. На высоких же оборотах двигателя (мотора) впускные клапаны открываются с небольшим опозданием, благодаря чему значительно увеличивается мощность в зоне максимальных оборотов, так как в цилиндре создается большее разряжение, а значит, и воздуха в цилиндры попадает значительно больше.

Интересно и то, что совсем недавно, впервые в мире, на автомобилях LEXUS появились фазовращатели с электроприводом, которые позволяют регулировать фазы газораспределения практически с нулевых оборотов двигателя, что в принципе невозможно для фазовращателей с гидроприводом. Необходимо отдельно упомянуть системы регулирования величины подъема клапанов (Honda i-VTEC, BMW Valvotronic, Porsche VarioCam Plus), благодаря которым значительно улучшаются как характеристики двигателя, так и топливная экономичность. Для примера рассмотрим знаменитую систему Valvetronic от компании BMW.

Разрабатывая эту системы, инженеры решили кардинально отказаться от дроссельной заслонки, хотя в процессе доводки ее все-таки оставили, она стала служить для диагностики системы Valvetronic и находится постоянно в открытом положении. Стоит напомнить, что при управлении процессом подачи воздушной смеси с помощью дросселя возникают значительные аэродинамические сопротивления и завихрения, особенно при неполном открытии заслонки.

Регулирование количества воздушной смеси в системе Valvetronic должно было происходить за счет изменения величины подъема клапанов, то есть сам клапан при этом выполнял функцию дроссельной заслонки. Для этого был разработан специальный механизм, позволявший регулировать подъем клапана в пределах от 0 до 10 мм. Идея системы состоит в следующем. Распредвал заведует открытием клапана не на прямую, а через специальный рычаг, который может менять свое положение в пространстве, тем самым изменяя величину перемещения коромысла, которое непосредственно воздействует на клапан. Регулировка рычага осуществляется с помощью червячной передачи и электромотора, а всем этим процессом заведует компьютер. Применение этой системы привело к тому, что на малых оборотах снизилось потребление топлива, а на больших возросла мощность, так как значительно увеличилась скорость заполнения цилиндров топливно-воздушной смесью. При этом значительно уменьшилось время отклика на педаль акселератора. Но у двигателей, оснащенных этой системой, появился небольшой недостаток — отсутствие разряжения во впускном коллекторе, которое необходимо для работы вакуумного усилителя тормозов. Проблема была решена следующим образом: немецкие инженеры взяли и поставили отдельный насос, который создавал необходимое разряжение.


Долой половину цилиндров в двигателе (моторе)

Кроме таких высокотехнологичных мер, как электропривод помпы, отключаемый генератор, электроусилитель руля, применяемых для увеличения экономичности двигателей, используются также и другие, более радикальные способы. Например, отключение части цилиндров на холостом ходу или в режимах частичных нагрузок у многоцилиндровых двигателей. Причем до недавнего времени этими системами пользовались в основном американские конструкторы, взять хотя бы систему отключения цилиндров Displacement-on-Demand («рабочий объем по требованию») от компании General Motor. Замысел системы достаточно прост: по достижении двигателем рабочей температуры электроника начинает опрашивать различные датчики, и если она обнаруживает, что мотор работает в режиме частичной нагрузки, то прекращает подачу топлива в половину цилиндров, то есть в 4. Причем цилиндры отключаются по диагонали, чтобы в двигателе не возникли вибрации.

Максимальный достигнутый эффект экономии топлива составил 25% от номинального, и это достаточно неплохой результат. Похожую систему представила и компания Honda, показав общественности новый 3,4‑литровый 6‑цилиндровый двигатель, в котором при спокойном перемещении в пространстве будут отключены 3 цилиндра. Повысить экономичность и КПД двигателя (мотора) можно также с помощью более совершенной системы зажигания.

Достаточно вспомнить знаменитые моторы (двигатели) с системой Twin Spark от Alfa-Romeo, где использованы две свечи на цилиндр. Эта система, как, в принципе, и многое другое, перекочевала в автомобильное двигателестроение с авиационных двигателей еще в 20‑е годы прошлого столетия. Вторая свеча зажигания позволила обеспечить более полное сгорание топлива, отчего увеличился КПД, да плюс ко всему прочему снизилось потребление топлива и увеличилась детонационная стойкость.

Недаром в 12‑цилиндровом турбированном двигателе от Mersedes, где вопрос детонации стоит наиболее остро, применена система зажигания с двумя свечами на цилиндр.

Невозможно не упомянуть в нашем разговоре о современных веяниях двигателестроения: непосредственном впрыске топлива в цилиндры двигателя. Идея подавать топливо непосредственно в цилиндры достаточно не нова, впервые ее воплотили в жизнь инженеры компании Robert Bosch еще в 30‑х годах XX века при конструировании авиационных двигателей, причем управление системой было механическим. Долгое время система непосредственного впрыска топлива не находила должного применения, хотя периодически появлялись автомобили, оснащенные ею. Вспомнить хотя бы легендарный Mercedes-Benz 300SL 1954 года, ведь он был оснащен механическим впрыском от фирмы Bosch. Свое второе рождение система непосредственного впрыска пережила в начале 90‑х годов прошлого века, когда стали появляться достаточно надежные и современные электронные системы управления.

Большой шаг в развитие и внедрение этих систем сделала компания Mitsubishi со своими двигателями GDI. Уникальность этого двигателя была в том, что он мог работать на сверхобедненной топливовоздушной смеси, в которой соотношение бензина к воздуху по массе достигало 40:1, это при том, что идеальное соотношение 14,7:1. То есть настолько обедненная смесь вообще не должна была гореть, но благодаря специальной форме поршня и узконаправленного факела распыла смесь с идеальным стехиометрическим составом попадала прямо на свечу зажигания, хотя по всему объему цилиндра была очень бедной. В данном двигателе было организовано три режима работы системы.

К-во Просмотров: 236
Бесплатно скачать Реферат: Бензиновые генераторы. Двигатели внутреннего сгорания