Реферат: Биохимические подходы к анализу нарушений обмена гемоглобина. Биохимия и патобиохимия печени
Печень богата различными ферментативными белками, она содержит ферменты, присущие только ей. Она состоит на 70% из воды, около 5% веса печени составляет гликоген, 5% липиды (нейтральные жиры, фосфолипиды и холестерин). Около половины сухого остатка – это белки, 90% из них составляет глобулин. Печень богата витаминами. Имеет разнообразный минеральный состав.(натрий, калий, кальций, магний, железо, цинк, медь, марганец, мышьяк и др.) Печень человека содержит около 12 г РНК и 4 г ДНК.
Основная роль печени в углеводном обмене заключается в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией соотношения между синтезом и распадом гликогена.
Синтез гликогена в печени может происходить не только из моносахаридов, но и из других продуктов обмена (молочной кислоты). Распад гликогена происходит как гидролитическим, так и фосфоролитическим путем.
Печень участвует во всех этапах обмена жиров. Для нормального переваривания и всасывания жиров необходима желчь, которая вырабатывается печенью. У человека за сутки выделяется 500-700 мл желчи. Желчь – желтовато-зеленоватая жидкость, состоит из 90% из воды, рН=6-8. Из ферментов в желчи имеется щелочная фосфатаза.
Основной составной частью сухого остатка желчи являются желчные кислоты. Они образуются в печени из холестерина. С желчными кислотами жирные кислоты образуют растворимые комплексы – холеиновые кислоты, которые и всасываются стенкой кишки. Соли желчных кислот, будучи поверхностно-активными веществами снижают поверхностное натяжение на границе двух фаз (вода-жир). Благодаря этому частицы жира распадаются на более мелкие, причем наличие солей желчных кислот препятствует слиянию этих мелких капелек. Таким образом, желчные кислоты эмульгируют жиры, и, создавая большую поверхность соприкосновения субстрата и фермента, облегчают действие липолитических ферментов. Однако роль желчи не ограничивается этим. Образующиеся в результате действия липазы жирные кислоты не могут всасываться стенкой кишечника, т.к. они не растворяются в воде. С желчными кислотами жирные кислоты образуют растворимые комплексы – холеиновые кислоты, которые и всасываются стенкой кишечника.
С желчью из организма удаляется ряд веществ, которые не могут выделяться через почки с мочой (некоторые красители). Они образуют прочные соединения с белком. В силу чего не проходят через капсулу почечных клубочков. Эти красители нашли применение для оценки экскреторной функции печени и состояния внутрипеченочного кровообращения (бромсульфаленовая проба). При паренхиматозных поражениях печени удаление красителя нарушено.
Печень участвует не только в переваривании и всасывании жиров, но и в их интермедиарном обмене.
Синтезированный жир с током крови поступает в печень. Нейтральный жир поступает непосредственно по системе воротной вены. При патологических процессах наступает нарушение синтеза фосфолипидов. Этот процесс лимитируется синтезом азотистых оснований. Недостаток (нарушение) синтеза фосфолипидов объясняется не только недостатком липотропных факторов. Но и недостаточным образованием в клетках печени АТФ, дающего энергию для синтетических процессов. Жировая инфильтрация может быть вызвана усиленным транспортом жиров из жировых депо в печень в связи с энергетическими нуждами организма, когда организм не может наблюдаться и при усилении синтеза жиров из углеводов, также это бывает при избыточном содержании углеводов в печени.
Роль печени в обмене стеринов.
Холестерин поступает в организм с пищей. Также он постоянно синтезируется из ацетил КоА. Синтез холестерина превышает его пищевое поступление. Избыток его выделяется через кишечник с желчью, часть его превращается в желчные кислоты, а также используется в качестве исходного материала для синтеза стероидных гормонов.
В печени превращениям подвергаются также гормоны коры надпочечника (кортикостероиды) и половые гормоны.
В печени с большой интенсивностью протекают процессы распада жирных кислот. Жирные кислоты распадаются главным образом путем β -окисления. Этот процесс требует наличия АТФ для активации жирных кислот и НАД – для окисления жирной кислоты. Печень является также основным местом синтеза ацетоновых тел.
Печень участвует как в синтезе, так и в распаде белков. Все альбумины плазмы, 75 % альфа- глобулинов и 50 β - глобулинов синтезируются в печени. Здесь синтезируются протромбин, проконвертин и фибриноген. Эти процессы требуют затраты энергии. Синтез протромбина, проконвертина происходит при участии витамина К. При болезнях печени имеет место гиповитаминоз К. В результате нарушается синтез ряда факторов системы свертывания крови.
Участие печени в распаде белка.
В результате протеолиза белка аминокислоты подвергаются дезаминированию , которое происходит главным образом в печени. При тяжелых нарушениях процесс дезаминирования нарушается, что приводит к увеличению концентрации АК в крови и моче. Дезаминирование АК сопровождается образованием аммиака, являющегося сильным клеточным ядом. Обезвреживание его происходит путем синтеза мочевины. Этот процесс происходит в печени, это одна из важнейших ее функций. Синтез мочевины связан с затратой довольно значительного количества энергии.: 1 молекула мочевины требует наличия 3 молекул АТФ. Мочевая кислота образуется у человека тоже в печени.
Основным источником для биосинтеза мочевины являются аминокислоты. Аммиак образуется при окислительном и неокислительном дезаминировании АК, при гидролизе амидов глутаминовой и аспарагиновой кислот. Аммиак выделяется при распаде пуриновых и пиримидиновых нуклеотидов. Важнейшая роль в образовании мочевины принадлежит печени.
АК в печени подвергаются переаминированию. Повышение активности трансаминаз наблюдается при различных деструктивных изменениях (инфаркте миокарда, гепатитах).
Кроме дезаминирования и переаминирования, некоторые АК подвергаются в печени особым превращениям, свойственным только данной аминокислоте. Нарушение функции печени в этих случаях существенно меняет путь распада АК.
Роль печени в обезвреживании различных веществ.
Механизм обезвреживания токсических веществ в печени может быть различным: окисление, восстановление, метилирование, ацетилирование, коньюгация с различными веществами.
Широко представлены защитные синтезы, например, синтез мочевины, в результате которого обезвреживается аммиак. Дезаминирование аминокислот сопровождается образованием аммиака, являющегося сильным клеточным ядом. Обезвреживание его происходит путем синтеза мочевины. Этот процесс происходит в печени, эта одна из важнейших ее функций.
Аммиак постоянно содержится в крови (12-65 мкмоль/л). Он поступает в кровь из органов и тканей, где постоянно образуется в процессе белкового обмена, а также из толстого кишечника, в котором аммиак освобождается при разложении азотсодержащих веществ гнилостными бактериями. Будучи направлен по системе воротной вены в печень, он превращается в ней в мочевину. Поэтому печеночная недостаточность может приводить к повышению уровня аммиака в крови. Определение аммиака должно проводиться немедленно после взятия крови. Особенно чувствительны к действию аммиака в крови клетки ЦНС. Определение аммиака в крови имеет большое прогностическое значение при заболеваниях печени, которая при тяжелых паренхиматозных повреждениях не в состоянии обезвредить поступающий аммиак. Содержание аммиака в моче является важным показателем состояния кислотно-основного равновесия. Количество аммиака в моче повышается как при респираторном так и метаболическом ацидозе, при гиперфункции коры надпочечников, лихорадочных состояниях. Снижается аммиак при алкалозах и гипофункции коры надпочечников.
Аммиак , образующийся в организме, представляет собой конечный продукт распада аминокислот. Он является токсичным и поэтому организм выработал механизмы его обезвреживания. К ним относятся образование мочевины, амидов глутаминовой и аспарагиновой кислот – глутамина и аспарагина, восстановительное аминирование альфа-кетоглутаровой кислоты и связывание аммиака кислотами в виде аммонийных солей. В основе этого метода лежит реакция разложения аммонийных солей с выделением свободного аммиака.
Мочевая кислота является конечным продуктом обмена пуриновых оснований, входящих в состав нуклеопротеидов. При окислении мочевой кислоты образуется пурпурная кислота, которая при взаимодействии с аммиаком образует окрашенное соединение, аммонийную соль пурпурной кислоты.
Кроме дезаминирования и переаминирования некоторые АК подвергаются в печени особым превращениям, свойственным только данной АК. Нарушение функции печени в этих случаях существенно меняет путь распада АК.
Токсические вещества из кишечника (продукты распада – фенол, крезол, скатол, индол) в печени подвергаются обезвреживанию. Механизм заключается в образовании парных соединений с серной и глюкуроновой кислотами. Примером обезвреживания токсических продуктов путем их восстановления является превращение хлоралгидрата в трихлорэтиловый спирт. Ароматические углеводы обезвреживаются путем окисления с образованием соответствующих карбоновых кислот.
В печени происходит распад и некоторых сильнодействующих физиологических агентов (адреналин, гистамин), инактивируются гормоны (эстрадиол – эстрон и эстриол), образуются конъюгаты гормонов с другими веществами. Печень принимает участие в синтезе и распаде пигментов: гемоглобина, миоглобина, цитохромов.
Многообразие функций печени находит отражение в обилии лабораторных исследований, предложенных для оценки функционального состояния этого органа. Наиболее чувствительными и точными методами определения мочевины являются уреазный (ферментативный). Принцип уреазного метода заключается в следующем: мочевина под действием уреазы разлагается на углекислый газ и аммиак. Последний определяется колориметрически по образованию окрашенных продуктов с реактивом Несслера. Количество мочевины в крови и моче снижено при циррозах печени, отравлениях фосфором, мышьяком и другими ядами.
Синтез и распад гликогена в печени – эти 2 процесса обеспечивают постоянство концентрации сахара в крови. Соотношение между синтезом и распадом гликогена регулируется нейрогуморальным путем при участии желез внутренней секреции. Такие гормоны, как АКТГ, глюкокортикоиды и инсулин, увеличивают содержание гликогена в печени. Что касается адреналина, глюкагона, соматотропного гормона гипофиза и тироксина, то они стимулируют распад гликогена.