Реферат: Біологічна дія іонізуючого випромінювання

Пробіг a - частинок у будь-якій речовині розраховується за такою емпіричною формулою

(см) (3.7.4.8)

де Ареч. - атомна маса речовини; - густина речовини, г/см3 ; Е - енергія альфа - випромінювання в МеВ.

Для захисту від a - випромінювання достатній шар повітря в кілька сантиметрів або екран з плексигласу чи скла товщиною в кілька міліметрів.

Пробіг a - частинок у повітрі розраховується за емпіричною формулою:

(см), (3.7.4.9)

де К1 - коефіцієнт, що залежить від температури і тиску; К2 - коефіцієнт, рівний 9,67.10-28 ; Е - енергія a - частинок, МеВ; V - швидкість a - частинок, см/с.

Для поглинання - випромінювання необхідний шар води або пластмаси товщиною не менше 15 мм. Якщо ж в якості поглинаючої речовини використовується речовина з вищим атомним номером, то товщина шару поглинання зменшується.

Для роботи з β - випромінюванням необхідно передбачити захист безпосередньо від β - частинок і захист від гальмового випромінювання, яке виникає при гальмуванні β - частинок у захисному екрані. Гальмівне випромінювання є квантами енергії, аналогічними до γ- квантів.

Захист від β - частинок здійснюється з допомогою комбінованих екранів. У такому екрані з боку джерела розташовують шар матеріалу з малою атомною масою (плексиглас, карболіт і ін.); це дає можливість знизити енергію квантів гальмівного випромінювання. Товщина цього шару повинна відповідати довжині максимального пробігу β - частинок у даному матеріалі. За ним розміщується шар матеріалу з великою атомною масою, що забезпечує ослаблення наведеного гальмівного випромінювання.

Дані про максимальний пробіг β - частинок різної енергії в повітрі, воді (або біологічній тканині) і алюмінії наведені в табл. 5.

Таблиця 5.

Максимальний пробіг β - частинок різної енергії в речовині

Максимальний пробіг β - частинок з максимальною енергією в межах від 0.5 до 20 МеВ розраховують за емпіричною формулою:

, (3.7.4.9)

де Еmax - максимальна енергія β - частинок, МеВ; - густина речовини, г/см3 .
В першому наближенні можна вважати, що в повітрі максимальний пробіг β - частинок L = 0,41Емакс [см], у воді (або біологічній тканині) - L = 5Емакс [мм], в алюмінії - L = 2Емакс [мм].

Ослаблення потоку β - частинок на більшій частині пробігу в речовині має експонентний характер

Id = I0 , (3.7.4.10)

де I0 - потік β - частинок при відсутності захисного екрана, частинок/с;

Id - потік β - частинок при наявності захисного екрана товщиною d см;

μ - лінійний коефіцієнт ослаблення β - випромінювання в речовині захисного екрана, см-1 .

Нейтрони й γ- випромінювання не мають певної довжини вільного пробігу. Залежність між товщиною шару поглинання й інтенсивністю випромінювання тут має логарифмічний характер. При будь-якій товщині поглинання у цьому випадку досягається лише часткове зниження інтенсивності.

Для захисту від нейтронного випромінювання застосовують різні матеріали в залежності від його енергії. Нейтрони із енергією більшою за 0.5 МеВ добре поглинаються в результаті процесів непружного розсіювання залізом. Нейтрони з енергією меншою 0.5 МеВ ефективно поглинаються захисним екраном , що містить водень (вода, парафін), а також берилій або графіт. Найбільш ефективно поглинають теплові нейтрони - кадмій, бор і залізо. Процес захоплення теплових нейтронів супроводжується випущенням γ - випромінювання. Для комбінованого захисту від нейтронного і γ- випромінювання застосовують шарові екрани з важких і легких матеріалів.

На підставі розрахункових і експериментальних даних створені таблиці для визначення товщини захисту від γ - випромінювання з різних матеріалів.

Для захисту від γ - випромінювання використовують свинець, бетон, залізо, воду, вольфрам, збіднений уран і осмій. Захист із бетону ( = 2,3 г/см3 ) міцний, дешевий, але дуже громіздкий і важкий. Свинець ( = 11,34 г/см3 ) ефективний, але має погані механічні властивості. Свинець використовують для виготовлення контейнерів (в комбінації із залізом) для транспортування різних ізотопів. Вольфрам ( = 19.3 г/см3 ) і збіднений уран ( = 18.7 г/см3 ) використовують в особливо відповідальних пристроях для забезпечення мінімальної ваги захисту.

Як приклад у табл. 6 наведені дані, що дозволяють визначити товщину захисту із свинцю, заліза й бетону для γ - випромінювання різних енергій.

Товщина захисних екранів, см ( для різних енергій)

Таблиця6

Свинець Залізо Бетон
(р=11,34 г/см3 ) (р = 7,89 г/см3 ) (р=2,3 г/см)
1МеВ 2 МеВ 3МеВ 1МеВ 2МеВ 3 МеВ 1 МеВ 2 МеВ 3 МеВ
2 1,3 2,0 2,1 3,3 3,9 4,4 12,9 14,1 15,3
10 3,8 5,9 6,5 8,5 11,0 12,2 29,9 37,7 43,4
102 7,0 11,3 12,2 14,5 19,5 22,1 50,5 65,7 77,5
103 10,2 16,5 18,0 20,5 27,5 31; 7 70,4 92,7 110,9
104 13,3 21,3 23,5 26,0 35,5 40,9 89,2 118,6 143,2
105 16,5 26,2 28,9 31,5 43,2 50,0 106,8 144,4 173,8
106 19,5 31,0 34,3 37,0 50,6 58,8 124,4 171,4 205,4

Більшість джерел γ – випромінювання, маючи дискретний лінійчастий характер γ – спектра , випромінюють від одної до кількох десятків окремих ліній. Так в γ – спектрі , який перебуває у радіоактивній рівновазі з продуктами свого розпаду, нараховується біля 50 характерних ліній, із них відмічається шість найбільш інтенсивних з інтервалом енергії від 0,3 до 1,76 МеВ. Гамма-джерела мають як правило невеликі розміри d. На відстанях r>4d будь яке гамма – джерело можна вважати точковим. Крім того, точкові гамма – джерела відносяться до ізотропних джерел, які випускають гамма – кванти з однаковою імовірністю у всіх напрямках.

К-во Просмотров: 197
Бесплатно скачать Реферат: Біологічна дія іонізуючого випромінювання