Реферат: Биотехнология 4

· биотехнология препаратов и продуктов для промышленного и бытового использования;

· биотехнология лекарственных препаратов;

· биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Генная и клеточная инженерия – являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате применения генно-инженерных методов можно получать рекомбинантные (модифицированные) молекулы РНК и ДНК, для чего производится выделение отдельных генов (кодирующих нужный продукт), из клеток какого-либо организма. После проведения определенных манипуляций с этими генами осуществляется их введение в другие организмы (бактерии, дрожжи и млекопитающие), которые, получив новый ген (гены), будут способны синтезировать конечные продукты с измененными, в нужном человеку направлении, свойствами. Иными словами, генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.

Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов

и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.

Исторически, выделяют «три волны» в создании генно-модифицированных растений:

Первая волна – конец 1980-х годов – создание растений с новыми свойствами устойчивости к вирусам, паразитам или гербицидам. В растениях «первой волны» дополнительно вводили всего один ген и заставляли его «работать», то есть синтезировать один дополнительный белок. «Полезные» гены «брали» либо у вирусов растений (для формирования устойчивости к данному вирусу), либо у почвенных бактерий (для формирования устойчивости к насекомым, гербицидам).

Вторая волна – начало 2000-х годов – создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.

В наши дни ученые создают растения «третьей волны», которые в ближайшие 10 лет появятся на рынке: растения-вакцины, растения-биореакторы для производства промышленных продуктов (компонентов для различных видов пластика, красителей, технических масел и т.д.), растения - фабрики лекарств и т.д.

Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.

В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации – пересадке органов от одного вида живых организмов другому, - достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа.

В настоящее время все больше приобретают популярность идеи экологизации и в более широком смысле биологизации всей хозяйственной и производственной деятельности.

Под экологизацией, как начальным этапом биологизации, можно понимать сокращение вредных выбросов производства в окружающую среду, создание малоотходных и безотходных промышленных комплексов с замк¬нутым циклом и т. п.

Биологизацию же следует понимать более широко, как радикальное преобразование производственной деятельности на основе биологических законов биотического круговорота биосферы.

Целью подобного преобразования должно быть встраивание всей хозяйственно-производственной деятельности в биотиче¬ский круговорот.

Особенно наглядно эта необходимость видна на феномене стратегической беспомощности химической защиты растений:

Дело в том, что в настоящее время нет в мире ни одного пестицида, к которому бы не приспособились вредители растений.

Более того, теперь отчетливо выявилась закономерность подобного приспособления: если в 1917г. появился один вид насекомых, приспособившихся к ДДТ, то в 1980г. таких видов стало 432.

Применяемые пестициды и гербициды крайне вредны не только для всего животного мира, но и для человека.

Точно так же в настоящее время становится понятной и стратегическая бесперспективность приме¬нения химических удобрений. В этих условиях совершенно естествен переход к биологической защите растений и биоорганической технологии с минимумом химических удобрений.

Решавшую роль в процессе биологизации сельского хозяйства может сыграть биотехнология.

Можно и нужно говорить о биологизации техники, промышленного производства и энергетики.

Активно развивающаяся биоэнергетика обещает революционные преобразования, поскольку она ориентирована на возобновляемые источники энергии и сырья.

3. Практические достижения и перспективы биотехнологии

К-во Просмотров: 289
Бесплатно скачать Реферат: Биотехнология 4