Реферат: Биотехнология вакцин и сывороток
Изготовление живых вакцин в 20-60-х годах текущего века не стояло на месте. Разработки получения живых вакцин проводились, no несколько более замедленными темпами, чем убитых вакцин. Лишь в последние 20-30 лет мы становимся свидетелями широкого производства живых вакцин и замены ими убитых вакцин, не всегда являющихся эффективными.
Например, многолетний опыт использования убитых вакцин в нашей стране и за рубежом при профилактике сальмонеллезов показал их недостаточную иммуногенную эффективность, так как сальмонеллезные антигены в организме привитых животных не способны размножаться. Это ограничивает их циркуляцию в организме и проявление клеточного иммунитета. Последнее заставляет применять убитые вакцины многократно, вводить их большими дозами, что обуславливает высокую реактогенность убитых вакцин. Для профилактики инфекционных болезней более эффективными считают живые вакцины их аттенуированных штаммов. Последние получают при пассировании вирулентных культур микроорганизмов на искусственных питательных средах и через невосприимчивых животных, а также воздействием на них физических, химических и биологических факторов. Введение таких штаммов в организм обеспечивает их размножение не вызывая заболевания. Наоборот, они обеспечивают выработку более прочного, в том числе клеточного, иммунитета. В отличие от иммунитета, сформировавшегося под действием убитых вакцин, иммунитет от применения живых вакцин наступает более быстро, уже после однократного введения вакцины. Он более напряженный и продолжительный. Однако преимущества живых вакцин перед убитыми этим не исчерпываются.
Согласно современным международным требованиям штаммы, применяемые для изготовления живых вакцин, должны иметь генетические маркеры, позволяющие отличить их от полевых штаммов. Они должны обладать постоянством (константность) своих биологических свойств, слабой остаточной вирулентностью и обеспечивать невосприимчивость к инфекции большинства животных при однократном применении вакцины.
Значение живых вакцин оценивается еще и с экономических позиций. На Международном конгрессе микробиологов в 1966 году было высказано мнение, что применение живых вакцин обеспечивает сохранение экологического баланса, не допускающее появление новых патогенных микроорганизмов.
Большинство выпускаемых у нас живых вакцин в настоящее время являются моноштаммными. Технология их изготовления не учитывает многообразия серовариантного состава бактерий.
В технологическом процессе вакцинного производства важны все звенья: от подбора производственных штаммов и питательной среды до конечных этапов - стандартизации и расфасовки биопрепаратов.
1.2 Определение и классификация
Вакцины (лат. vaccinus коровий) - препараты, получаемые из микроорганизмов или продуктов их жизнедеятельности; применяются для активной иммунизации людей и животных с профилактической и лечебной целями.
Различают следующие виды вакцин:
Вакцина адсорбированная (v. adsorptum) - В., антигены которой сорбированы на веществах, усиливающих и пролонгирующих антигенное раздражение.
Вакцина антирабическая (v. antirabicum; анти- + лат. rabies бешенство) - В., изготовленная из штамма фиксированного вируса бешенства в суспензии тканей головного мозга животных или в культуре клеток и предназначенная для предупреждения заболевания у лиц, укушенных (ослюненных) животными, больными бешенством (подозреваемыми на заболевание).
Вакцина ассоциированная (v. associatum; син.: В. комбинированная, В. комплексная, поливакцина) - препарат, состоящий из нескольких В. различного типа, предназначенный для одновременной иммунизации против нескольких инфекционных болезней.
Вакцина живая (v. vivum) - B., содержащая жизнеспособные штаммы патогенного микроорганизма, ослабленные до степени, исключающей возникновение заболевания, но полностью сохранившие антигенные свойства, обусловливающие формирование специфического иммунитета у привитого.
Вакцина поливалентная (v. polyvalens; греч. poly - много + лат. valens, valentis сильный) - В., изготовленная на основе нескольких серологических вариантов возбудителя одной инфекционной болезни.
Вакцина убитая (v. inactivatum) - В., изготовленная из микроорганизмов инактивированных (убитых) воздействием физических или химических факторов.
Вакцина фенолизированная (v. phenolatum) - убитая В., изготовленная из микроорганизмов, инактивированных фенолом.
Вакцина формалинизированная (v. formalinatum; син. формолвакцина) - убитая В., изготовленная из микроорганизмов, инактивированных формалином.
Вакцина химическая (v. chemicum) - В., состоящая из специфических антигенов, извлеченных из микроорганизмов, и очищенная от балластных веществ.
Вакцина эмбриональная (v. embryonale) - В., изготовленная из вирусов или риккетсий, выращенных на эмбрионах птиц (кур, перепелок).
Вакцина этеризованная (v. aetherisatum) - убитая В., изготовленная из микроорганизмов, инактивированных эфиром.
Вакцины состоят из действующего начала - специфического антигена; консерванта для сохранения стерильности (в неживых В.); стабилизатора, или протектора, для повышения сроков сохраняемости антигена; неспецифического активатора (адъюванта), или полимерного носителя, для повышения иммуногенности антигена (в химических, молекулярных вакцинах). Специфические антигены, содержащиеся в В., в ответ на введение в организм вызывают развитие иммунологических реакций, обеспечивающих устойчивость организма к патогенным микроорганизмам. В качестве антигенов при конструировании В. используют: живые ослабленные (аттенуированные) микроорганизмы; неживые (инактивированные, убитые) цельные микробные клетки или вирусные частицы; извлеченные из микроорганизмов сложные антигенные структуры (протективные антигены); продукты жизнедеятельности микроорганизмов - вторичные метаболиты (например, токсины, молекулярные протективные антигены): антигены, полученные путем химического синтеза или биосинтеза с применением методов генетической инженерии.
В соответствии с природой специфического антигена В. делят на живые, неживые и комбинированные (как живые, так и неживые микроорганизмы и их отдельные антигены).
Живые В. получают из дивергентных (естественных) штаммов микроорганизмов, обладающих ослабленной вирулентностью для человека, но содержащих полноценный набор антигенов (например, вирус коровьей оспы), и из искусственных (аттенуированных) штаммов микроорганизмов. К живым В. можно отнести также векторные В., полученные генно-инженерным способом и представляющие собой вакцинный штамм, несущий ген чужеродного антигена (например, вирус оспенной вакцины со встроенным антигеном вируса гепатита В).
Неживые В. подразделяют на молекулярные (химические) и корпускулярные. Молекулярные В. конструируют на основе специфических протективных антигенов, находящихся в молекулярном виде и полученных путем биосинтеза или химического синтеза. К этим В. можно отнести также анатоксины, которые представляют собой обезвреженные формалином молекулы токсинов, образуемых микробной клеткой (дифтерийный, столбнячный, ботулинический и др.). Корпускулярные В. получают из цельных микроорганизмов, инактивированных физическими (тепло, ультрафиолетовое и другие излучения) или химическими (фенол, спирт) методами (корпускулярные, вирусные и бактериальные вакцины), или из субклеточных над-молекулярных антигенных структур, извлеченных из микроорганизмов (субвирионные вакцины, сплит-вакцины, вакцины из сложных антигенных комплексов).
Молекулярные антигены, или сложные протективные антигены бактерий и вирусов, используют для получения синтетических и полусинтетических вакцин, представляющих собой комплекс из специфического антигена, полимерного носителя и адъюванта.
Из отдельных В. (моновакцин), предназначенных для иммунизации против одной инфекции, готовят сложные препараты, состоящие из нескольких моновакцин. Такие ассоциированные вакцины, или поливакцины, поливалентные вакцины обеспечивают иммунитет одновременно против нескольких инфекций. Примером может служить ассоциированная АКДС-вакцина, в состав которой входят адсорбированные дифтерийный и столбнячный анатоксины и коклюшный корпускулярный антиген. Существует также семейство полианатоксинов: ботулинический пентаанатоксин, противогангренозный тетраанатоксин, дифтерийно-столбнячный дианатоксин. Для профилактики полиомиелита применяют единый поливалентный препарат, состоящий из аттенуироваиных штаммов I, II, III серотипов (сероваров) вируса полиомиелита.
Насчитывается около 30 вакцинных препаратов, применяемых с целью профилактики инфекционных болезней; примерно половина из них живые, остальные инактивированные. Среди живых В. выделяют бактерийные - сибиреязвенную, чумную, туляремийную, туберкулезную, против Ку-лихорадки; вирусные - оспенную, коревую, гриппозную, полиомиелитную, паротитную, против желтой лихорадки, краснухи. Из неживых В. применяют коклюшную, дизентерийную, брюшнотифозную, холерную, герпетическую, сыпнотифозную, против клещевого энцефалита, геморрагических лихорадок и другие, а также анатоксины - дифтерийный, столбнячный, ботулинический, газовой гангрены.
1.3 Свойства вакцин
Основным свойством вакцин является создание активного поствакцинального иммунитета, который по своему характеру и конечному эффекту соответствует постинфекционному иммунитету, иногда отличаясь от него лишь количественно. Вакцинальный процесс при введении живых вакцин сводится к размножению и генерализации аттенуированного штамма в организме привитого и вовлечению в процесс иммунной системы. Хотя по характеру поствакцинальных реакций при введении живых В. вакцинальный процесс и напоминает инфекционный, однако он отличается от него своим доброкачественным течением.