Реферат: Частотные характеристики линейных систем управления

Уравнение в отклонениях (2) описывает возмущенное движение системы, являющееся результатом действия каких-либо возмущений, приводящих к появлению отклонений от установившегося режима. Уравнение установившегося режима описываетневозмущенное движение . Нахождение в состоянии покоя тоже движение, хотя и специфическое.

Сложность решения дифференциальных уравнений высокого порядка без применения вычислительной техники и невозможность на основании численных решений создания общих методов анализа и синтеза систем привели к широкому использованию методов, связанных с применением математического аппарата преобразований Лапласа и Фурье. Эти методы и составили сущность так называемой классической теории автоматического управления.

Необходимо отметить, что существуют нелинейные функции, которые невозможно линеаризовать посредством разложения ряд Тейлора. В этом случае используют специальные методы, разработанные для исследования нелинейных систем.

Линейное дифференциальное уравнение n-го порядка

(3)

является базовой математической моделью классической теории автоматического регулирования и управления. Напомним основные свойства решения данного уравнения, которые, кстати, должны быть хорошо известны из курса высшей математики.

Под решением дифференциального уравнения понимается выражение функции времени , которое ему удовлетворяет. Другими словами, если функция является решением уравнения (3), то подстановка данной функции в рассматриваемое уравнение приводит к тождеству. При этом функция считается заданной.

В курсе высшей математики выражение линейного дифференциального уравнения n -го порядка приводится в несколько иной форме, а именно в виде

, (4)

где функция считается заданной.

Конечно, если считать функцию известной, то не трудно определить правую часть уравнения (3) и считать функцию в уравнении (4) заданной. Таким образом, более детальное, чем в уравнении (4) представление правой части (3) используется только при описании САУ. Полезность такой детализации видна только при совместном рассмотрении нескольких взаимосвязанных между собой систем или одной системы, состоящей из нескольких звеньев, каждое из которых описывается уравнением рассматриваемого вида.

Как известно, решение рассматриваемого уравнения имеет вид:

,

где - решение однородного уравнения

, (5)

описывающего собственные колебания системы, а - частное решение неоднородного уравнения (4), описывающего вынужденные колебания системы.

Таким образом, колебания системы складывается из собственных колебаний, которые определяются при равенстве нулю внешнего воздействия только ненулевыми начальными условиями, и вынужденных колебаний, которые определяются только внешним воздействием при нулевых начальных условиях.

Таким образом, наряду терминологией теории дифференциальных уравнений относительно решений последних (общее и частное решения), иногда более выразительной является терминология теории колебаний (собственные и вынужденные колебания). Наряду с ними в теории управления используется собственная терминология: вместо частного решения, соответствующего определенной правой части уравнения или вынужденных колебаний, которые определяются внешней силой, говорят о выходном процессе , соответствующем, входному процессу или о преобразовании процесса в процесс , или о реакции системы на воздействие .

Методы определения частного решения линейного дифференциального уравнения при произвольной правой части рассматриваются в курсе математики. В данном курсе основной интерес представляет не формальная сторона дела, а содержательная. Она ярче всего проявляется в случае, когда внешнее воздействие представляется в виде суммы гармонических воздействий. То же самое можно сказать и о методах определения собственных колебаний. Существуют эффективные алгоритмы вычисления собственных колебаний линейных систем, но нас должна интересовать в первую очередь качественная сторона дела.

Общее решение однородного уравнения (5) имеет вид:

, (6)

где: l i - корни характеристического уравнения

, (7)

а Ci - произвольные постоянные.

Характеристическое уравнение получается формальной заменой выражения i - й производной в выражении однородного дифференциального уравнения на i - ю степень корня в выражении характеристического уравнения.

Нередко выражения однородного уравнения (5) и характеристического уравнения (7) записываются в несколько иной форме через произвольные параметры ai , а именно в виде:

, (8)

. (9)

Дело в том, что в соответствии с давно сложившейся традицией нумерация коэффициентов полинома начинается с нуля при переменной в старшей степени, а затем с понижением степени переменной индекс коэффициента при нем увеличивается. Другими словами, используются выражение (9) для характеристического уравнения системы, описываемой дифференциальным уравнением (8).

К-во Просмотров: 315
Бесплатно скачать Реферат: Частотные характеристики линейных систем управления