Реферат: Cisco Tag Switching Essay Research Paper Abstract
Explicit routing is defined as a method of providing routes that are explicitly chosen to be other than the normal route chosen by the routing protocols. Tag switching provides support for explicit routes by using the Resource Reservation Protocol (RSVP) and defining a new RSVP Object – the Explicit Route Object.3 This Explicit Route Object is used to specify a particular explicit route. The object is carried in the RSVP PATH message. The tag binding information for the route is carried in the Tag Object by the RSVP RESV message. See RSVP below:
When a TSR wants to send an RESV message for a new RSVP flow, the TSR allocates a tag from its pool of free tags. Next, the TSR creates an entry in its TFIB with the incoming tag set to the allocated tag, places the tag in the Tag Object, and then sends out the RESV message with this object. This newly created TFIB entry contains tag information and information about local resources (e.g. queues) that packets whose tag matches the incoming tag of the entry will use. 6
The TSR populates the outgoing tag component as it receives the RESV message from its next hop TSR. Once the RSVP flow is established, the reservation state needs to be refreshed. To accomplish this, the TSR sends RESV messages associated with the flow and includes with them the same tag that the TSR bound to flow when it first created the RSVP state for the flow. This is control-driven binding. 3
The Explicit Route Object is composed of a sequence of variable-length sub-objects, where each sub-object identifies a single hop within an explicit route. The ability to express individual hops not just in terms of individual TSRs within a network topology, but in terms of a group of TSRs, provides the routing system with a significant amount of flexibility. In essence a TSR that computes an explicit route need not have detailed information about the route, whether the TSR is in the middle of the route or on the edge of the route. 6
Multicast Routing
In a multicast routing environment, multicast routing procedures are responsible for constructing a multicast distribution tree, with receivers as leaves. This tree is constructed by multicast routing protocols (e.g. DVMRP, PIM, CBT, MOSPF) and used by the forwarding component of the network layer routing to forward multicast packets. PIM is the most common protocol used in tag switching and is used in this section to describe how Tag switching supports multicast routing.
In support of multicast forwarding, each TSR associates a tag with a multicast tree as follows: 3
X A TSR creates a multicast forwarding entry, either for a shared or a source specific tree, and the list of outgoing interfaces for the entry. The TSR also creates local tags, one per outgoing interface.
X Next, the TSR creates an entry in its TFIB and populates (outgoing tag, outgoing interface, outgoing link layer information) with this information for each outgoing interface, placing a locally generated tag in the outgoing tag field. This creates a binding between a multicast tree and the tags. The TSR then advertises over each outgoing interface associated with the entry, the binding between the tag, and the tree.
X When a TSR receives a binding between a multicast tree and a tag from another TSR, if the other TSR is the upstream neighbor (with respect to the multicast tree). The local TSR places the tag carried in the binding into the incoming tag component of the TFIB entry associated with the tree.
X TSRs that are interconnected via a multiple-access subnetwork (e.g Ethernet), the tag allocation procedure for multicast has to be coordinated among the TSRs. In all other cases the tag allocation procedure for multicasting could be the same as destination-based routing.
ATM and Tag Switching
ATM forwarding is based on label swapping and the tag-switching model is also based on label swapping, tag-switching technology can be readily applied to ATM switches by implementing the control component of tag switching.
Tag information needed for tag switching is carried in the VCI field. If there were 2 levels of tagging needed, then the VPI field would be used as well. 3
To obtain the necessary control information the TSR should be able to: 8
Participate as a peer in the use of Network Layer routing protocols.
Perform routing information aggregation by supporting destination-based unicast routing in order to forward Network Layer traffic.
Support destination-based routing on an ATM switch will require the TSR to maintain several tags associated with a route, or group of routes with the same next hop. This will assist in avoiding the interleaving of packets, which arrive from different upstream tag switches, but are sent concurrently to the same next hop.
Utilize an ATM switch as a TSR and appear as a router to an adjacent router.
As stated earlier in the destination-based routing section, of the methods that accommodate tag allocation and TFIB management, upstream tag allocation and downstream tag allocation on demand are most useful in ATM networks. 4
Implementing tag switching on an ATM switch does not impede the ability to support a traditional ATM control plane (e.g. PNNI) on the same switch. Tag switching technology and the ATM control plane, would operate separately (e.g. Ships in The Night mode) with the VPI/VCI space and the other resources partitioned so that the components do not interact.
Business Aspect
In most Internet based businesses, as well as corporate enterprise networks, the rate of growth and the need for extended use of assets to become profitable makes it unrealistic for service providers (ISPs) to start building their networks from scratch with new technology. 2
Cisco’ s Tag Switching technology is a key element in its overall strategy for providing scalable networks and service solutions. Tag Switching provides network managers with the flexibility to meet current and future network designs by supporting a variety of Layer 2 technologies and Layer 3 protocols, and can be implemented or a purely routed, or switched ATM network. Cisco has also contributed the Tag Switching specification to the IETF as the basis for the emerging Multi-protocol Label Switching (MPLS) standard. 9
Today, ISPs struggle to scale existing backbone infrastructures for the future and deliver differentiated network services to save costs and generate new revenue streams. ISPs also want to be able to charge premium rates that many customers will pay for special capabilities or levels of service. Tag Switching lets ISPs: 7
Seamlessly deliver IP-based network services over high performance ATM.
Offer differentiated network services, such as QoS, and to subsequently develop and offer a price model for services.
Scale existing network infrastructures to meet future growth requirements.
Protect existing equipment investments with a Cisco IOS software only upgrade to certain ATM switches and routers.