Реферат: Cкремблирование и дескремблирование линейного сигнала

Рис. 6. Диаграмма состояний шифратора
двубинарного кода DBM

Если шифратор находится в состоянии Q1, то при поступлении на вход А сигнала лог. 0 на его выходе W формируется нулевое напряжение 0 В. Этот факт отражен обозначением «Лог. 0 = 0 В» около двунаправленной связи между узлами Q1 и Q2. В данной ситуации шифратор переходит в состояние Q2. Переходы между состояниями Q2 и Q3 возможны при поступлении на вход А сигналов лог. 1, но эти переходы сопровождаются выдачей отрицательного напряжения (-1 В) на выход W. Переходы между состояниями Q3 и Q4 возможны при поступлении на вход А шифратора сигналов лог. 0.

Из диаграммы состояний следует, что если на вход А подана последовательность лог. 0, то шифратор последовательно переходит из состояния Q1 в состояние Q2 и обратно либо из состояния Q3 в состояние Q4 и обратно. Эти ситуации внешне неразличимы, так как на выходе шифратора в любом случае сформировано нулевое напряжение. Если на вход А подана последовательность лог. 1, то шифратор последовательно переходит из состояния Q1 в состояние Q4 и обратно либо из состояния Q2 в состояние Q3 и обратно. Эти ситуации различаются полярностью выходного напряжения.

Если на вход А подана последовательность ...010101..., то шифратор последовательно циклически проходит все состояния в направлении по часовой или против часовой стрелки в зависимости от начальных условий. Нулевые биты отображаются нулевым напряжением, единичные — попеременно положительным и отрицательным.

В общем случае данные кодируются следующим образом. Нулевые биты (А = 0) отображаются нулевым напряжением (W = 0 В), единичные — положительным или отрицательным в соответствии со следующими правилами:

Правило 1. При нечетном числе нулевых битов между двумя единичными (например, в коде ...10001...) полярности импульсов, отображающих единичные биты, взаимнообратны (...-000+...или...+000-...).

Правило 2. При четном числе нулевых битов между двумя единичными (например, в коде ...1001...) полярности импульсов, отображающих единичные биты, одинаковы (...-00-... или ...+00+...).

Правило 3. В группе единичных битов (...111...) сигналы имеют одинаковую полярность (...+++... или ...---...).

В соблюдении приведенных правил можно убедиться при сопоставлении временных диаграмм сигналов А и W на рис. 8.11. Из этих диаграмм также следует, что при передаче непрерывной последовательности лог. 1 (DATA = 11... 1) частота основной гармоники сигнала NRZ(I) равна половине скорости передачи данных или 62,5 МГц. При этих же услови­ях частота основной гармоники сигнала DBM равна четверти скорости передачи данных или 31,25 МГц. (Интересующие нас области временных диаграмм выделены серым фоном.) Амплитуда этой гармоники достаточно высока по сравнению с остальными, поэтому без заметного искажения формы сигнала ее можно несколько снизить с помощью заграждающего фильтра.

Заграждающий фильтр настроен на частоту 31,25 МГц. Значения емкости и индуктивности удовлетворяют соотношению LC = 2,6 х 10-17. Например, при L=2,6 мкГн С=10 пФ. Резонансный импеданс цепи R1-L-C равен ZF = L/R1C. Коэффициент подавления сигнала на резонансной частоте равен (Zp + R2)/R2 и может регулироваться выбором параметров фильтра.

Двубинарное кодирование с фильтрацией выходного сигнала позволяет сместить его энергетический спектр в область более низких частот по сравнению с другими решениями. Так, 78 % энергии сигнала сосредоточено в полосе частот ниже 30 МГц, а 90 % энергии — в полосе частот ниже 42,6 МГц. Напомним, что скорость передачи данных составляет 125 Мбит/с!

Дешифратор двубинарного кода (см. рис. 3) можно выполнить по схеме, приведенной на рис. 2, г. Эта схема нечувствительна к полярности импульсов и в равной мере применима для дешифрации кодов MLT-3, RND(MLT-3) и DBM.

2. Передача данных с использованием скремблера-дескремблера

Скремблирование может выполняться с различными целями. Наиболее распространенная цель — защита передаваемых данных от несанкционированного доступа. Для ее достижения разработано множество методов кодирования и схемных решений. Но нас интересует иная задача, связанная с «разравниванием» спектра сигнала и повышением надежности синхронизации приемника с источником передаваемых по линии данных. Применительно к этой задаче цель скремблирования состоит в исключении из потока данных длинных последовательностей лог. 0, лог. 1 и периодически повторяющихся групп битов. Для этого необходимо преобразовать данные так, чтобы они выглядели как случайные, т.е. лишенные какой-либо видимой закономерности.

2.1.Генераторы псевдослучайных битовых последовательностей

Скремблеры и дескремблеры обычно построены на основе генераторов псевдослучайных битовых последовательностей. Пример такого генератора приведен на рис. 7. Генератор выполнен на основе кольцевого сдвигового регистра RG с логическим элементом Исключающее ИЛИ (XOR) в цепи обратной связи. Если в исходном состоянии в регистре присутствует любой ненулевой код, то под действием синхросигнала CLK этот код будет непрерывно циркулировать в регистре и одновременно видоизменяться. В качестве выхода генератора можно также использовать выход любого разряда регистра.

В общем случае в М-разрядном регистре обратная связь подключается к разрядам с номерами М и N (М > N). Выбор оптимального значения N для заданного М — непростая задача. К счастью, она уже решена. Вариант таблицы выбора N приведен на рис. 7. Таблица описывает ряд генераторов различной разрядности. Каждый генератор формирует последовательность битов с максимальным периодом повторения, равным 2M- 1. В такой последовательности встречаются все М-разрядные коды, за исключением нулевого. Этот код представляет собой своеобразную «ловушку» для данной схемы: если бы нулевой код появился в регистре, дальнейшая последовательность битов была бы также нулевой. Но при нормальной работе генератора попадания в ловушку не происходит.

Последовательность максимальной длины обладает следующими свойствами:

В полном цикле (2M - 1 тактов) число лог. 1 на единицу больше, чем числолог. 0. Добавочная лог. 1 появляется засчет исключения состояния, при котором врегистре присутствовал бы нулевой код.Это можно интерпретировать так, что вероятности появления на выходе регистралог. 0 и лог. 1 практически одинаковы.

Рис. 7. Генератор псевдослучайной битовой последовательности максимальной длины:
а — схема; б — таблица для выбора промежуточной точки подключения обратной связи

В полном цикле (2M-1 тактов) половина серий из последовательных лог. 1 имеет длину 1, одна четвертая серий -длину 2, одна восьмая — длину 3 и т.д. Такими же свойствами обладают и серии из лог. 0 с учетом пропущенного лог. 0. Это говорит о том, что вероятности появления «орлов» и «решек» не зависят от исходовпредыдущих «подбрасываний». Поэтому вероятность того, что серия из последовательных лог. 1 или лог. 0 закончится при следующем подбрасывании, равна 1/2 вопреки обывательскому пониманию «закона о среднем».

Если последовательность полногоцикла (2M-1 тактов) сравнивать с этой же последовательностью, но циклически сдвинутой на любое число тактов W (W не является нулем или числом, кратным 2M-1), то число несовпадений будет на единицу больше, чем число совпадений.

Наиболее распространены две основные схемы построения пар «скремблер-дескремблер»: с неизолированными и изолированными генераторами псевдослучайных битовых по­следовательностей. Рассмотрим эти схемы и их модификации.

2.2. Скремблер и дескремблер с неизолированными генераторами псевдослучайных битовых последовательностей

В схеме, приведенной на рис. 8.14, скремблер и дескремблер выполнены на основе рассмотренных генераторов псевдослучайных битовых последовательностей. Оба генератора имеют одинаковую разрядность и однотипную структуру обратных связей. Все процессы, протекающие в системе передачи данных, синхронизируются от тактового генератора (на рисунке не показан). Этот генератор размещен на передающей стороне системы и может принадлежать источнику данных либо скремблеру. В каждом такте на вход скремблера по­дается очередной бит передаваемых данных SD, а в сдвиговом регистре RGI накопленный код продвигается на один разряд вправо.

Если предположить, что источник данных посылает в скремблер длинную последовательность лог. 0, то элемент XOR1 можно рассматривать как повторитель сигнала Y1 с выхода элемента XOR2. В этой ситуации регистр RG1 замкнут в кольцо и генерирует точно такую же псевдослучайную последовательность битов, как и в рассмотренной ранее схеме (см. рис. 7). Если от источника данных поступает произвольная битовая последовательность, то она взаимодействует с последовательностью битов с выхода элемента XOR2. В результате формируется новая (скремблированная) последовательность битов SCRD, по структуре близкая случайной. Эта последовательность, в свою очередь, продвигается по регистру RG1, формирует поток битов на выходе элемента XOR2 и т.д.

Рис. 8. Система передачи данных, в которой скремблер и дескремблер содержат неизолированные генераторы псевдослучайных битовых последовательностей

Скремблированная последовательность битов SCRD передается по линии и поступает в дескремблер. С помощью генератора с фазовой автоподстройкой частоты (этот генератор на рисунке не показан) из входного сигнала выделяется тактовый сигнал. Под управлением тактового сигнала биты SCRD продвигаются в регистре RG2, а в приемник данных поступают дескремблированные данные RD.

Потоки данных RD и SD совпадают с точностью до задержки передачи по линии. Действительно, в установившемся режиме в сдвиговых регистрах RG1 и RG2 присутствуют одинаковые коды, так как на входы этих регистров поданы одни и те же данные SCRD, а тактовая частота, по сути, общая. Поэтому Y2 = Y1, и, с учетом этого, RD = SCRD ⊕ Y2 = SD ⊕ Y1 ⊕ Y2 = SD ⊕ Y1 ⊕ Yl = SD ⊕ 0 = SD.

К-во Просмотров: 1416
Бесплатно скачать Реферат: Cкремблирование и дескремблирование линейного сигнала