Реферат: Де й із чого зароджується життя?
За останні кілька років при дослідженні радіоастрономічними методами газопилових хмар у Галактиці в них було виявлено кілька типів органічних сполук. Особливо відзначимо синильну кислоту, формальдегід, метиламін, спирти. (Всі ці прості молекули - ключові вихідні продукти для синтезу більше складних сполук, абсолютно необхідних для життя, наприклад, амінокислот - будівельних блоків білка.) Таке відкриття тим більше дивно, що раніше в газопилових хмарах передбачалася лише присутність водню й деякого числа двохатомних сполук. Оскільки ці хмари (або їхні фрагменти) ототожнюються як райони зародження зірок і планетних систем, те подібні результати спостережень становлять винятковий інтерес.
Після відкриття органічних молекул у газопилових хмарах міжзоряні порошини, на яких можуть концентруватися ці молекули, сталі називати носіннями життя. Зовсім недавно знаменитий англійський астрофізик Ф. Хойл висунув ідею про те, що в глибинах Космосу життя може зароджуватися саме на міжзоряних порошинах. Більше того, Ф. Хойл і його співавтор Н. Викрамсингх зв'язують епідемії грипу на Землі із внесенням збудників цієї інфекції з Космосу. Правда, Хойл делікатно обходить питання про те, як виникає життя на міжзоряних порошинах.
Ще раніше висловлювалися думки про те, що життя здатне розвиватися на кометах і астероїдах. Але подивимося, чи може дійсно виникнути життя в результаті хімічних процесів у холодних газопилових хмарах?
Порівняно прості молекули, такі, як формальдегід і синильна кислота, там є. Вони виникають із льодів простих газів, таких, як пари води, метан, аміак, на поверхні порошин. Що ж потім?
Реакції утворення більше складних полімерів ідуть при низьких температурах дуже повільно. Крім того, через дуже низьку температуру на порошинах немає рідкої води, що необхідна для всього живого. Та й міжзоряні порошини дуже малі, менше мікрона, навіть нормальна бактеріальна клітка більше. Ні, для життя потрібний комфорт, а тут і холодно й "тісно".
У метеоритах знаходять уже більше складні сполуки вуглецю - амінокислоти. Здавалося б, усього один крок до живого. Але немає. Метеорити теж свого роду еволюційний тупик, оскільки в них немає ні гідросфери (хоча небагато води в хімічно зв'язаному виді все-таки є), ні атмосфери. Що ж тоді залишається? Тільки планети?
Тільки планети.
Спробуємо розібратися, чому. Для цього нам доведеться подивитися, які природні фактори критичні для життя. Природно, спочатку ми будемо поки говорити про те, що ближче: про нашого, земний, життя.
Добре відомо, що так звані термофільні (теплолюбні) форми мікроорганізмів існують, у гарячих вулканічних джерелах, температура яких досягає в деяких випадках 95-98 градусів Цельсія. Механізми, які усувають ушкодження в клітках і підвищують їхня стійкість до високої температури, до кінця незрозумілі, так у нас із вами немає необхідності вдаватися в детальний аналіз біохімії термофілів. Ясно, що еволюція виробила захисні механізми. Однак верхня температурна межа життєдіяльності організмів, безумовно, є, і ми не допустимо серйозної помилки, якщо встановимо його близько 100 градусів Цельсія.
У тому випадку, якщо життя вже існує, нижня температурна границя не настільки критична. Однак ми акцентуємо свою увагу на проблемі зародження життя, і нам необхідно враховувати швидкості хімічних реакцій. Оскільки більшість реакцій проходить у рідкій фазі, то для нормальної життєдіяльності автоматично виходить і нижня температурна границя близько 0 градусів по шкалі Цельсія.
Отже, для зародження життя ми одержуємо досить вузький температурний інтервал, усього близько 100 градусів. Причому важливо, що стабільність температур повинна зберігатися дуже довгий час без помітних перепадів.
Де ж можуть бути такі умови? Тільки на планетах, що мають атмосферу. Саме атмосфера - фактор планетарного масштабу, що виключає різкі температурні перепади. Наприклад, на Місяці, позбавленої повітря, перепади температури вночі й удень великі: від + 110 до -120, більше двохсот градусів, а на Венері й Землі вони незначні.
Оскільки саме в атмосфері, гідросфері й на поверхні роздягнула фаз відбувається синтез органічних молекул, те цілком зрозуміло, що для проходження реакцій синтезу на планетах повинні бути які-небудь джерела енергії.
Отже, планети, так ще планети з атмосфери. До речі, атмосфера виконує ще одну дуже важливу функцію: вона захищає тендітні органічні молекули від руйнівної дії ультрафіолетового випромінювання батьківської зірки. Наприклад, у нас на Землі життя навряд чи було б можливе, якби в атмосфері не було озонового екрана. Саме цей екран затримує найнебезпечнішу частину випромінювання Сонця.
Умовимося називати планети, де життя типу земний у принципі може існувати, "зеленими планетами".
На таких планетах повинна бути атмосфера, гідросфера й досить комфортна м'яка погода. Але як довго все це повинне існувати? Тисячу, мільйон, мільярд років?
Вік Землі - близько 4,5 мільярди років, і палеонтологи затверджують, що 3,5 мільярди років тому на Землі вже було життя. А скільки живуть зірки?
Адже відомо, що деякі з них вибухають. Це так звані нові й зверх нові зірки. Ясно, що, якщо зірка вибухне, біля її не залишиться нічого живого. Існує загальне правило в астрофізику: чим зірка гаряче, тим менше строк її життя. Тому "зелені планети" можуть бути тільки біля не дуже гарячих зірок, і тоді в сфері нашого розгляду залишаться лише зірки із часом життя не менш мільярда років, тобто зірки спектральних класів F, G, ДО, М.
Тут, однак, істотним фактором є тепловий потік, що досягає поверхні планети, оскільки всі ми не любимо, коли занадто холодно. Наприклад, енергія випромінювання М-Карлика становить лише близько 5 відсотків енергії зірки типу Сонця. Але якщо планета в системі М-Карлика перебуває недалеко від зірки, там будуть цілком комфортні умови для життя.
Еволюція органічних сполук може досягати високого рівня лише на планетах. Дійсно, у газопилових утвореннях концентрації речовини занадто низькі, близько 1 атома в кубічному сантиметрі, щоб з ефективністю йшли реакції утворення біополімерів. Не можна, щоправда, виключити можливість синтезу простих амінокислот і в газопилових хмарах, і в атмосферах інфрачервоних зірок. Що стосується комет, то в лабораторних умовах, що відтворюють "кометну" обстановку, учені продемонстрували можливість утворення досить складних органічних молекул, а в метеоритах амінокислоти втримуються в помітних кількостях. Проте для всіх процесів ускладнення необхідні досить високі концентрації матеріалу, і саме тому всі перераховані об'єкти є свого роду еволюційними тупиками. Отже, все-таки планети.
Скільки ж "зелених планет" у нашій Галактиці?
Якщо вважати, що системи типу нашої сонячної не виключення, тоді тільки в нашій Галактиці планет, придатних для життя, може бути більше мільйона.
А чи можуть бути планети без зірок? У принципі, так.
На таких планетах за рахунок їхнього внутрішнього тепла теж могла б існувати життя, аналогічна найпростішим формам нашого земного життя, наприклад, бактерії.
Так чому ж все-таки вуглець і вода становлять основу життя?
Ще в 1913 році біохімік з Гарвардського університету, Л. Гендерсон, видав книгу "Придатність навколишнього середовища". Автор дійшов висновку, що все живе повинне складатися з води й вуглецю, оскільки сам Л. Гендерсон складається з води й вуглецю. Аргумент, звичайно, сильний, але спробуємо подивитися на це завдання більш серйозно.
Всі відомі на Землі живі організми, а також викопні форми життя в певному змісті хімічно однакові: білки, нуклеїнові кислоти, жири, цукрі й ряд інших біологічно важливих молекул, побудованих з обмеженого кола елементів. Це так звані абсолютні органогени, серед яких центральне місце займає вуглець. У число абсолютних органогенів входять також кисень, азот, фосфор, водень, сірка, калій, кальцій і магній.
Всі хімічні реакції в клітках ідуть у водяному розчині, причому саме у воді реалізуються тисячі біохімічних процесів, що підтримують життєдіяльність організму.
Але чому ж саме вуглець і вода грають настільки унікальну роль у хімії живого? Бути може, на Землі існували інші форми життя, побудовані на іншій хімічній основі, які згодом були знищені вуглецевим життям? Чи можливі в принципі "інші хімії" життя? Ці питання мають філософське й наукове значення.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--