Реферат: Дискретизация и квантование изображений
3. Коррелляционные функции равны Bx(t )=B (t ) .
4. Справедливо свойство ортогональности .
ѕѕѕѕѕѕѕ
h(t)x(t)=0 A(t)B(t)=0
5.-Ґ <=A(t) < Ґ ; -Ґ <=B(t)<Ґ;E(t)>=0 .
ѕѕ
6. Если Гауссовский шум то A(t)=0 и B(t)=0
( Т.е. нулевые мат. ожидания ) .
Если A(t)=F то это значит что в случайном процессе
появилась детерменированная ф-ия .
x(t)=A(t)cosw0t + B(t)sinw0t+ Fcosw0t
7. A (t)=B (t) =Gx - мощность реализации .
ѕѕѕ
E (t)= A (t)+B (t) =2Gx - мощностьогибающей .
8. Ba(t)=Bб(t) ( т.к. скорости изменения одинаковы )
9. Bx(t)=Ba(t)cosw0t
ДИСКРЕТНАЯ СВЕРТКА.
Ґ
f(t)=тC(t)y(t-t)dt - Свертка -интеграл Дюамеля (прохождение
-Ґ сигнала через нелинейную инерционную
цепь)
N-1
fm=1/N*еCkUm-k - Свертка дискретных сигналов.
k=0 m=0,1,2,3,...,N-1.Т.к.число отсчетов описывающее
сигнал Х(t) ,будет описывать и функцию fn.
N-1
Ck=еСxn exp(j2pk/N) ;Cxn-амплитуда “n”-ой гармоники спектра.
n=0
N-1