Реферат: Дисперсия Света 3

Если устранить вторую пластинку и вращать первую или вращать обе пластинки вместе так, чтобы их оси совпадали, то мы не заметим никакого изменения интенсивности проходящего пучка. Таким образом, изменение интенсивности происходит только тогда, когда свет, прошедший одну из пластинок, встречает другую, ось которой меняет направление по отношению к оси первой.

Можно объяснить все наблюдаемые явления, если сделать следующие допущения:

Турмалин способен пропускать световые волны лишь только в том случае, когда они направлены определенным образом относительно его оси (например, параллельно оси);

Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны);

В свете фонаря (Солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Предположение третье объясняет, почему естественный свет хорошо проходит через турмалин при любой его ориентации, хотя турмалин по предположению первому способен пропускать световые колебания только в одном направлении. Это объясняется тем, что в естественном свете всегда окажется одна и та же доля колебаний, направление которых совпадает с направлением, пропускаемым турмалином. Прохождение света через турмалин приводит к тому, что из всех возможных направлений поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Такой свет называется поляризованным. Объяснение опыта с кристаллами турмалина: первая пластинка поляризует проходящий свет, оставляя в нем колебания только одного направления. Эти колебания могут пройти через вторую пластинку турмалина полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемым вторым турмалином, т. е. когда ее ось параллельна оси первой пластинки. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемым вторым турмалином, то свет будет полностью задержан. Если же направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично. Это показывает опыт.

Объяснить опыты с турмалином, как мы выяснили, можно лишь допустив, что свет обладает свойствами поперечной волны. С помощью представления о поперечных световых волнах хорошо объясняются и другие многочисленные явления, связанные с поляризацией света. Признание световых волн поперечными имело очень большое значение в учении о свете.

Впоследствии была установлена связь между оптическими и электромагнитными явлениями, которая и нашла свое выражение в электромагнитной теории света, выдвинутой Максвеллом в 1876 г. Электромагнитная волна представляет собой распространение переменного электромагнитного поля, причем напряженности электрического и магнитного полей перпендикулярны друг к другу и к линии распространения волны: электромагнитные волны поперечны. Таким образом, поперечность световых волн, доказанная опытами по поляризации света, естественно объясняется электромагнитной теорией света. В световой волне, как и во всякой электромагнитной волне, имеются одновременно два взаимно перпендикулярных колебания: направление колебаний вектора напряженности электрического поля и индукция магнитного поля. Все, что мы говорим о направлении световых колебаний, относится к направлению колебаний вектора напряженности электрического поля. Специальные опыты позволили установить, что в волне, прошедшей через турмалин, колебания вектора напряженности электрического поля направлены вдоль оси турмалина.

Итак, можно сделать вывод: свет обладает свойствами поперечной электромагнитной волны.

Интерференция Света

Сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства, называют интерференцией (рис. 103). Интерферировать могут только когерентные волны - волны, имеющие одинаковую частоту (длину волны) и постоянную во времени разность фаз. Для получения когерентных волн свет от одного источника делят тем или иным способом на две части примерно равной интенсивности, создают между ними разность хода волн, а затем снова сводят вместе. Существует несколько способов получения когерентных световых волн.

Пусть две когерентные волны приходят в точку М, пройдя геометрические пути s1 и s2 (рис. 104 ).

Если разность S2-S1 равна целому числу k длин волн А, то в точке М гребень одной волны будет накладываться на гребень другой, т. е. волны будут максимально усиливать друг друга:

Интерферирующие световые волны максимально усиливают друг друга, если их разность хода равна целому числу длин волн.

Число k называется порядком интерференционного максимума.

Если дельта d равна нечетному числу длин полуволн, то при сложении волн гребень одной волны будет накладываться на впадину другой, поэтому волны будут максимально ослаблять друг друга

Таким образом, интерферирующие волны будут максимально ослаблять друг друга, если их разность хода равна нечетному числу полуволн.

Практическое применение интерференции света разнообразно: контроль качества поверхностей, создание светофильтров, просветляющих покрытий, измерение длины световых волн, точное измерение расстояния и др. На явлении интерференции света основана голография.

К-во Просмотров: 179
Бесплатно скачать Реферат: Дисперсия Света 3