Реферат: Доказательство Великой теоремы Ферма с помощью Малой теоремы

Файл : FERMA-PR-ABCfor

© Н. М. Козий, 2009

Авторские права защищены свидетельством Украины

№ 28607 Д ОКАЗАТЕЛЬСТВО B ЕЛИКОЙ ТЕОРЕМЫ Ф ЕРМА

C ПОМОЩЬЮ М АЛОЙ ТЕОРЕМЫ Ф ЕРМА

Великая теорема Ферма (ВТФ) формулируется следующим образом: диофантово уравнение:

А n + В n = С n (1)

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.

При A<B значение числа С лежит в пределах:

B < C < B (2)

Для доказательства ВТФ применим Малую теорему Ферма ( МТФ ) , в соответствии с которой:

Nn - N = nM , (3)

где: N - натуральное число;

n – простой показатель степени;

M – натуральное число.

Полагая, что в формуле (1) С натуральное число, в соответствиис формулой (3) запишем:

Cn - C = nX (4)

где: X – натуральное число.

Из курса элементарной алгебры известно, что:

U2k – V2k = (U-V)(U+V)D, (5)

где: D - натуральное число.

Обозначим: n= 2k + 1

Тогда формулу (4) с учетом формулы (5) запишем следующим образом:

Cn - C = nX = C(C2k -1) = C(C-1)(C+1)M (6)

Или:

Cn = C(C-1)(C+1)M + C (7)

где: M - натуральное число.

При любых значениях числа C число nX всегда содержит числа, соответствующие алгебраическому выражению [C(C-1)(C+1)].

Аналогично формуле (6) запишем:

n + В n ) - (A+B) = nK = [A(A-1)(A+1)Y ] + [B(B-1)(B+1)Z ] (8)

где:K, Y, Z – натуральные числа.

Отсюдааналогично формуле (7):

А n + В n = [A(A-1)(A+1)Y +A] + [B(B-1)(B+1)Z + В ] (9)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 114
Бесплатно скачать Реферат: Доказательство Великой теоремы Ферма с помощью Малой теоремы