Реферат: Достижения и проблемы генной инженерии
Современные данные палеонтологии говорят о квантовом характере видообразования. В соответствии с геологическим временем этот процесс почти мгновенен. Анализ уравнений популяционной генетики показывает, что процесс видообразования похож на фазовый переход.
Биология как наука о жизни
2. ГЕННАЯ ИНЖЕНЕРИЯ.
НАУЧНО – ИССЛЕДОВАТЕЛЬСКИЕ АСПЕКТЫ.
Генная инженерия — экспериментальная наука. Возникла на стыке молекулярной биологии и генетики официально в 1972 г., когда в лаборатории П. Берга (Стенфордский университет, США) была получена первая рекомбинантная (гибридная) ДНК на базе объединения генетического материала, полный геном вируса обезьян 40, часть генома измерного бактериофага и гены галактозного оперона.
Генная инженерия нацелена на создание организмов с новыми комбинациями наследственных свойств путем конструирования функционально-активных генетических структур в форме рекомбинантных ДНК из фрагментов геномов разных организмов, которые вводились в клетку .
Как отмечалось, впервые рекомбинантную ДНК получила группа П. Берга в 1972 г.
В 1973-74 гг. С. Коэном, Д. Хелинским, Г. Бойером и другими учеными впервые сконструированы функционально активные молекулы гибридной ДНК, то есть удалось их клонирование. Были созданы первые, не существующие в Природе, плазмиды (стабилизатор наследства) на базе ДНК из разных видов бактерий и высших организмов, из ДНК лягушки (кодирующей синтез рРНК), морского ежа (контролирующей синтез белков-гистон), и от мыши.
Вскоре аналогичная работа была выполнена в нашей стране группой специалистов под руководством С. И. Алиханяна и А. А. Баева.
Достижения генетики и химии нуклеиновых кислот позволили разработать методологию генной инженерии:
—открытие явления рестрикции — модификации ДНК и выделение ферментов рестриктаз для получения специфических ферментов;
—создание методов химического и ферментативного синтеза генов;
—выявление векторных молекул ДНК, способных перенести в клетку чужеродную ДНК и обеспечить там экспрессию соответствующих генов;
— разработка методов трансформации у различных организмов и отбор клонов, несущих рекомбинантные ДНК.
Составляющие методики.
Явление рестрикции — модификации ДНК впервые наблюдали Г. Бертани и Д. Ж. Вейгль, а его суть раскрыл В. Арберг: в бактериях действуют специальные ферменты, способные специфично распознать "свою" (бактериальную) ДНК от "чужой" (фаговой). Эти ферменты ограничивают возможность размножения фаговой ДНК в бактериях путем ее специфичной (в зависимости от типа фермента) деградации. Такие ферменты были названы эндонуклеазами рестрикции няирестриктазами.
В 1971 г. группой Г. Смитга была выделена первая рестриктаза, специфично расщепляющая двухцепочную ДНК в строго определенных сайтах. Вскоре было установлено, что болынинство видов бактерий обладает специфичными системами рестрикции — модификации.
В генной инженерии используют ферменты, разрывающие двухцепочную ДНК в зоне участка узнавания или на незначительном фиксированном расстоянии от него. Фермент распознает специфичную последовательность и разрезает ее. В последнем случае образуются выступающие одноцепочечные концы, получившие название "липких". В настоящее время известно несколько сотен таких рестриктаз, что обеспечивает возможность получения различных фрагментов ДНК, содержащих желаемые гены.
Работы в направлении синтеза гена начались еще до 1972 г.
Так в 1969 г. появились публикации по выделению генов при помощи физических и генетических методов.
На начальном этапе развития генной инженерии широко использовался способ получения генов из природных источников, и он до сих пор применяется для создания банка генов.
В том же году группой Корани впервые осуществлен химический синтез расшифрованного гена аланиновой тРНК дрожжей, но функционально не активный; позднее и активный ген супрессорный тирозиновой тРНК, галактозного оперона.
Этому способствовало совершенствование методов определения первичных структур (секвенирования) нуклеиновых кислот, а также белков и других продуктов, кодируемых синтезированным геном.
Секвенирование ДНК играет большую роль и в изучении функций генов и генетических систем.
Метод химического синтеза генов и введения их в клетки микроорганизмов обеспечил возможность получения продуцентов инсулина человека для лечения больных диабетом, открылся путь для производства продуктов белковой природы.
Широкое распространение нашел метод ферментативного синтеза генов по механизму обратной транскрипции. Не вдаваясь в его суть, отметим, что он позволяет синтезировать практически любой ген в присутствии соответствующих иРНК, методы выделения которых достаточно хорошо разработаны.
С его помощью созданы и клонированы в бактериях гены, кодирующие глобины человека, животных, птиц и т. п., интерферон человека, который используют для борьбы с вирусными инфекциями, злокачественными опухолями и рядом других заболеваний.
Однако остается нерешенной проблема стабильности гибридных молекул. Вектор должен обеспечивать стабильное наследование рекомбинантных ДНК в автономном, реже интегрированном с хромосомой состоянии, иметь генетические маркеры для обнаружения трансформированных клеток, содержать сайт узнавания и др. Он используется для получения банка генов, так как клонированные в них большие фрагменты ДНК легко хранить, выделять и анализировать. Создаются специальные векторы и для клонирования рекомбинантных ДНК в клетках животных и растений, при этом в клетках животных ими могут быть некоторые вирусы, а растений — агробактерии на основе специальных плазмид и передаваться клеткам в естественных условиях бактериями.
Схема, используемая в генной инженерии, едина: